You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 41 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self,):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. test_case_math_ops = [
  122. ('Neg', {
  123. 'block': P.Neg(),
  124. 'desc_inputs': [[1, 3, 4, 4]],
  125. 'desc_bprop': [[1, 3, 4, 4]]}),
  126. ('Sub', {
  127. 'block': P.Sub(),
  128. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  129. 'desc_bprop': [[2, 3, 3, 5]]}),
  130. ('TensorAdd', {
  131. 'block': P.TensorAdd(),
  132. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  133. 'desc_bprop': [[2, 3, 3, 5]]}),
  134. ('Mul0', {
  135. 'block': P.Mul(),
  136. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  137. 'desc_bprop': [[2, 3, 3, 5]]}),
  138. ('Mul1', {
  139. 'block': P.Mul(),
  140. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  141. 'desc_bprop': [[2, 3, 3, 5]]}),
  142. ('Mul2', {
  143. 'block': P.Mul(),
  144. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  145. 'desc_bprop': [[2, 3, 3, 5]],
  146. 'skip': ['backward']}),
  147. ('Mul3', {
  148. 'block': P.Mul(),
  149. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  150. 'desc_bprop': [[2, 3, 3, 5]],
  151. 'skip': ['backward']}),
  152. ('Mul4', {
  153. 'block': P.Mul(),
  154. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  155. 'desc_bprop': [[2, 3, 3, 5]],
  156. 'skip': ['backward']}),
  157. ('Add0', {
  158. 'block': P.TensorAdd(),
  159. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]]}),
  161. ('Add1', {
  162. 'block': P.TensorAdd(),
  163. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  164. 'desc_bprop': [[2, 3, 3, 5]],
  165. 'skip': ['backward']}),
  166. ('Add2', {
  167. 'block': P.TensorAdd(),
  168. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  169. 'desc_bprop': [[2, 3, 3, 5]],
  170. 'skip': ['backward']}),
  171. ('Add3', {
  172. 'block': P.TensorAdd(),
  173. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add4', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  179. 'desc_bprop': [[2, 3, 3, 5]],
  180. 'skip': ['backward']}),
  181. ('Minimum', {
  182. 'block': P.Minimum(),
  183. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  184. 'desc_bprop': [[2, 3, 3, 5]]}),
  185. ('Pow_0', {
  186. 'block': P.Pow(),
  187. 'desc_const': [2.0],
  188. 'desc_inputs': [[2, 3, 3, 5]],
  189. 'desc_bprop': [[2, 3, 3, 5]]}),
  190. ('Pow_1', {
  191. 'block': P.Pow(),
  192. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  193. 'desc_bprop': [[2, 3, 3, 5]]}),
  194. ('Exp', {
  195. 'block': P.Exp(),
  196. 'desc_inputs': [[2, 3]],
  197. 'desc_bprop': [[2, 3]]}),
  198. ('Floor', {
  199. 'block': P.Floor(),
  200. 'desc_inputs': [[2, 512, 56, 56]],
  201. 'desc_bprop': [[2, 512, 56, 56]],
  202. 'skip': ['backward']}),
  203. ('ACos', {
  204. 'block': P.ACos(),
  205. 'desc_inputs': [[2, 3]],
  206. 'desc_bprop': [[2, 3]]}),
  207. ('Acosh', {
  208. 'block': P.Acosh(),
  209. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  210. 'skip': ['backward']}),
  211. ('Sin', {
  212. 'block': P.Sin(),
  213. 'desc_inputs': [[2, 3]],
  214. 'desc_bprop': [[2, 3]]}),
  215. ('Reciprocal', {
  216. 'block': P.Reciprocal(),
  217. 'desc_inputs': [[2, 3, 3, 5]],
  218. 'desc_bprop': [[2, 3, 3, 5]]}),
  219. ('Minimum_0', {
  220. 'block': P.Minimum(),
  221. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  222. 'desc_bprop': [[2, 3, 3, 5]]}),
  223. ('Maximum', {
  224. 'block': P.Maximum(),
  225. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  226. 'desc_bprop': [[2, 3, 3, 5]]}),
  227. ('Maximum_0', {
  228. 'block': P.Maximum(),
  229. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  230. 'desc_bprop': [[2, 3, 3, 5]]}),
  231. ('MaximumGrad', {
  232. 'block': G.MaximumGrad(),
  233. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  234. 'skip': ['backward']}),
  235. ('MinimumGrad', {
  236. 'block': G.MinimumGrad(),
  237. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  238. 'skip': ['backward']}),
  239. ('StridedSlice', {
  240. 'block': P.StridedSlice(),
  241. 'desc_const': [(0, 1, 2, 1),
  242. (2, 3, 3, 4),
  243. (1, 1, 1, 1)],
  244. 'desc_inputs': [[2, 3, 3, 5]],
  245. 'desc_bprop': [[2, 2, 1, 3]]}),
  246. ('Slice_1', {
  247. 'block': P.Slice(),
  248. 'desc_const': [(0, 1, 2, 1),
  249. (1, 1, 1, 2)],
  250. 'desc_inputs': [[2, 3, 3, 5]],
  251. 'desc_bprop': [[1, 1, 1, 2]]}),
  252. ('StridedSliceGrad', {
  253. 'block': G.StridedSliceGrad(),
  254. 'desc_const': [(64, 1, 1024),
  255. (0, 1, 0),
  256. (64, 2, 1024),
  257. (1, 1, 1)],
  258. 'desc_inputs': [[64, 128, 1024]],
  259. 'skip': ['backward']}),
  260. ('RandomChoiceWithMask', {
  261. 'block': P.RandomChoiceWithMask(256),
  262. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  263. 'desc_bprop': [[256,4], [256,4]],
  264. 'skip': ['backward']}),
  265. ('LessEqual', {
  266. 'block': P.LessEqual(),
  267. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  268. Tensor(np.random.rand(4).astype(np.float16))],
  269. 'skip': ['backward']}),
  270. ('Less', {
  271. 'block': P.Less(),
  272. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  273. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  274. 'skip': ['backward']}),
  275. ('RealDiv_0', {
  276. 'block': P.RealDiv(),
  277. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  278. 'desc_inputs': [],
  279. 'skip': ['backward']}),
  280. ('RealDiv', {
  281. 'block': P.RealDiv(),
  282. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  283. 'desc_bprop': [[4]]}),
  284. ('RealDiv_1', {
  285. 'block': P.RealDiv(),
  286. 'desc_inputs': [[512, 1024], [512, 1024]],
  287. 'desc_bprop': [[512, 1024]]}),
  288. ('FloorDiv', {
  289. 'block': P.FloorDiv(),
  290. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  291. Tensor(np.random.rand(4).astype(np.float16))],
  292. 'skip': ['backward']}),
  293. ('FloorMod', {
  294. 'block': P.FloorMod(),
  295. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  296. Tensor(np.random.rand(4).astype(np.float16))],
  297. 'skip': ['backward']}),
  298. ('identity', {
  299. 'block': ops.functional.identity,
  300. 'desc_inputs': [[2, 2]],
  301. 'skip': ['backward']}),
  302. ('MatMul_1', {
  303. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  304. 'desc_inputs': [[1024, 160], [160, 1024]],
  305. 'desc_bprop': [[1024, 1024]]}),
  306. ('MatMul_2', {
  307. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  308. 'desc_inputs': [[160, 1024], [1024, 160]],
  309. 'desc_bprop': [[1024, 1024]]}),
  310. ('Sub', {
  311. 'block': P.Sub(),
  312. 'desc_inputs': [[3], [3]],
  313. 'desc_bprop': [[3]]}),
  314. ('TruncatedNormal', {
  315. 'block': P.TruncatedNormal(),
  316. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  317. 'desc_inputs': [],
  318. 'skip': ['backward'],
  319. 'add_fake_input': True}),
  320. ('Select', {
  321. 'block': P.Select(),
  322. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  323. [2, 3], [2, 3]],
  324. 'desc_bprop': [[2, 3]]}),
  325. ('Rank', {
  326. 'block': P.Rank(),
  327. 'desc_inputs': [[2, 3]],
  328. 'skip': ['backward']}),
  329. ('InvertPermutation', {
  330. 'block': P.InvertPermutation(),
  331. 'desc_const': [(0, 3, 1, 2)],
  332. 'desc_inputs': [],
  333. 'skip': ['backward']}),
  334. ('Square', {
  335. 'block': P.Square(),
  336. 'desc_inputs': [[4]],
  337. 'desc_bprop': [[4]]}),
  338. ('Rsqrt', {
  339. 'block': P.Rsqrt(),
  340. 'desc_inputs': [[4]],
  341. 'desc_bprop': [[4]]}),
  342. ('Sqrt', {
  343. 'block': P.Sqrt(),
  344. 'desc_inputs': [[4]],
  345. 'desc_bprop': [[4]]}),
  346. ('RealDiv', {
  347. 'block': P.RealDiv(),
  348. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  349. 'desc_bprop': [[2, 3, 4, 5]]}),
  350. ('Div', {
  351. 'block': P.Div(),
  352. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  353. 'desc_bprop': [[2, 3, 4, 5]]}),
  354. ('Equal', {
  355. 'block': P.Equal(),
  356. 'desc_inputs': [[3, 4, 5], [4, 5]],
  357. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  358. ('NotEqual', {
  359. 'block': P.NotEqual(),
  360. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  361. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  362. ('Greater', {
  363. 'block': P.Greater(),
  364. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  365. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  366. ('GreaterEqual', {
  367. 'block': P.GreaterEqual(),
  368. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  369. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  370. ('LogicalNot', {
  371. 'block': P.LogicalNot(),
  372. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  373. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  374. ('LogicalAnd', {
  375. 'block': P.LogicalAnd(),
  376. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  377. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  378. ('LogicalOr', {
  379. 'block': P.LogicalOr(),
  380. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  381. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  382. ('NpuAllocFloatStatus', {
  383. 'block': P.NPUAllocFloatStatus(),
  384. 'desc_inputs': [],
  385. 'add_fack_input': True,
  386. 'fack_input_type': np.float32,
  387. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  388. 'skip': ['backward']}),
  389. ('NpuGetFloatStatus', {
  390. 'block': P.NPUGetFloatStatus(),
  391. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  392. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  393. 'skip': ['backward']}),
  394. ('NpuClearFloatStatus', {
  395. 'block': P.NPUClearFloatStatus(),
  396. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  397. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  398. 'skip': ['backward']}),
  399. ('CheckValid', {
  400. 'block': P.CheckValid(),
  401. 'desc_inputs': [[20000, 4], [3]],
  402. 'desc_bprop': [[20000]],
  403. 'skip': ['backward']}),
  404. ('NMSWithMask', {
  405. 'block': P.NMSWithMask(0.5),
  406. 'desc_inputs': [[128, 5]],
  407. 'desc_bprop': [[128, 5], [128], [128]],
  408. 'skip': ['backward']}),
  409. ('Abs', {
  410. 'block': P.Abs(),
  411. 'desc_inputs': [[4]],
  412. 'desc_bprop': [[4]]}),
  413. ('CumSum', {
  414. 'block': P.CumSum(),
  415. 'desc_const': [0],
  416. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  417. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  418. ('ReduceSum_3', {
  419. 'block': P.ReduceSum(),
  420. 'desc_const': [0],
  421. 'desc_inputs': [[3, 2]],
  422. 'desc_bprop': [[2]]}),
  423. ('ReduceSum_4', {
  424. 'block': P.ReduceSum(keep_dims=True),
  425. 'desc_const': [0],
  426. 'desc_inputs': [[3, 2]],
  427. 'desc_bprop': [[1, 2]]}),
  428. ('ReduceSum_5', {
  429. 'block': P.ReduceSum(keep_dims=True),
  430. 'desc_inputs': [[2, 3, 4]],
  431. 'desc_bprop': [[1, 1, 1]]}),
  432. ('ReduceSum_6', {
  433. 'block': P.ReduceSum(),
  434. 'desc_inputs': [[2, 3, 4]],
  435. 'desc_bprop': [[1]]}),
  436. ('Sum_0', {
  437. 'block': P.ReduceSum(),
  438. 'desc_const': [(1,)],
  439. 'desc_inputs': [[3, 2]],
  440. 'desc_bprop': [[3]]}),
  441. ('Sum_1', {
  442. 'block': P.ReduceSum(keep_dims=True),
  443. 'desc_const': [(1,)],
  444. 'desc_inputs': [[3, 2]],
  445. 'desc_bprop': [[3, 1]]}),
  446. ('Sum_2', {
  447. 'block': P.ReduceSum(),
  448. 'desc_const': [(0, 1)],
  449. 'desc_inputs': [[3, 2]],
  450. 'desc_bprop': [[1]]}),
  451. ('Sum_3', {
  452. 'block': P.ReduceSum(),
  453. 'desc_const': [0],
  454. 'desc_inputs': [[3, 2]],
  455. 'desc_bprop': [[2]]}),
  456. ('Sum_4', {
  457. 'block': P.ReduceSum(keep_dims=True),
  458. 'desc_const': [0],
  459. 'desc_inputs': [[3, 2]],
  460. 'desc_bprop': [[1, 2]]}),
  461. ('Sum_5', {
  462. 'block': P.ReduceSum(keep_dims=True),
  463. 'desc_const': [()],
  464. 'desc_inputs': [[2, 3, 4]],
  465. 'desc_bprop': [[1, 1, 1]]}),
  466. ('Sum_6', {
  467. 'block': P.ReduceSum(),
  468. 'desc_const': [()],
  469. 'desc_inputs': [[2, 3, 4]],
  470. 'desc_bprop': [[1]]}),
  471. ('Sign', {
  472. 'block': P.Sign(),
  473. 'desc_inputs': [[3]],
  474. 'desc_bprop': [[3]]}),
  475. ('Round', {
  476. 'block': P.Round(),
  477. 'desc_inputs': [[3]],
  478. 'desc_bprop': [[3]]}),
  479. ('Atan2', {
  480. 'block': P.Atan2(),
  481. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  482. Tensor(np.array([1, 1]).astype(np.float32))],
  483. 'desc_bprop': [[2]]})
  484. ]
  485. test_case_nn_ops = [
  486. ('BiasAdd', {
  487. 'block': P.BiasAdd(),
  488. 'desc_inputs': [[1, 3, 3, 3], [3]],
  489. 'desc_bprop': [[1, 3, 3, 3]]}),
  490. ('BiasAddGrad', {
  491. 'block': G.BiasAddGrad(),
  492. 'desc_inputs': [[1, 3, 3, 3]],
  493. 'skip': ['backward']}),
  494. ('Gelu', {
  495. 'block': P.Gelu(),
  496. 'desc_inputs': [[1, 3, 4, 4]],
  497. 'desc_bprop': [[1, 3, 4, 4]]}),
  498. ('GeluGrad', {
  499. 'block': G.GeluGrad(),
  500. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  501. 'desc_bprop': [[2, 2]],
  502. 'skip': ['backward']}),
  503. ('Tanh', {
  504. 'block': P.Tanh(),
  505. 'desc_inputs': [[1, 3, 4, 4]],
  506. 'desc_bprop': [[1, 3, 4, 4]]}),
  507. ('TanhGrad', {
  508. 'block': G.TanhGrad(),
  509. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  510. 'desc_bprop': [[1, 3, 4, 4]],
  511. 'skip': ['backward']}),
  512. ('ReLU', {
  513. 'block': P.ReLU(),
  514. 'desc_inputs': [[1, 3, 4, 4]],
  515. 'desc_bprop': [[1, 3, 4, 4]]}),
  516. ('ReLU6', {
  517. 'block': P.ReLU6(),
  518. 'desc_inputs': [[1, 3, 4, 4]],
  519. 'desc_bprop': [[1, 3, 4, 4]]}),
  520. ('ReLUGrad', {
  521. 'block': G.ReluGrad(),
  522. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  523. 'skip': ['backward']}),
  524. ('Elu', {
  525. 'block': P.Elu(),
  526. 'desc_inputs': [[2, 3, 4]],
  527. 'desc_bprop': [[2, 3, 4]]}),
  528. ('EluGrad', {
  529. 'block': G.EluGrad(),
  530. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  531. 'desc_bprop': [[2, 3, 4]],
  532. 'skip': ['backward']}),
  533. ('Sigmoid', {
  534. 'block': P.Sigmoid(),
  535. 'desc_inputs': [[1, 3, 4, 4]],
  536. 'desc_bprop': [[1, 3, 4, 4]]}),
  537. ('MaxPool', {
  538. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  539. 'desc_inputs': [[100, 3, 28, 28]],
  540. 'desc_bprop': [[100, 3, 14, 14]]}),
  541. ('MaxPoolGrad', {
  542. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  543. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  544. 'desc_bprop': [[3, 4, 6, 6]],
  545. 'skip': ['backward']}),
  546. ('AvgPool', {
  547. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  548. 'desc_inputs': [[100, 3, 28, 28]],
  549. 'desc_bprop': [[100, 3, 14, 14]]}),
  550. ('AvgPoolGrad', {
  551. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  552. 'desc_const': [(3, 4, 6, 6)],
  553. 'const_first': True,
  554. 'desc_inputs': [[3, 4, 6, 6]],
  555. 'desc_bprop': [[3, 4, 6, 6]],
  556. 'skip': ['backward']}),
  557. ('MaxPoolWithArgmax', {
  558. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  559. 'desc_inputs': [[128, 32, 32, 64]],
  560. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  561. ('SoftmaxCrossEntropyWithLogits', {
  562. 'block': P.SoftmaxCrossEntropyWithLogits(),
  563. 'desc_inputs': [[1, 10], [1, 10]],
  564. 'desc_bprop': [[1], [1, 10]],
  565. 'skip': ['backward_exec']}),
  566. ('Flatten', {
  567. 'block': P.Flatten(),
  568. 'desc_inputs': [[128, 32, 32, 64]],
  569. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  570. ('LogSoftmax', {
  571. 'block': P.LogSoftmax(),
  572. 'desc_inputs': [[64, 2]],
  573. 'desc_bprop': [[160, 30522]]}),
  574. ('LogSoftmaxGrad', {
  575. 'block': G.LogSoftmaxGrad(),
  576. 'desc_inputs': [[16, 1234], [16, 1234]],
  577. 'desc_bprop': [[64, 2]],
  578. 'skip': ['backward']}),
  579. ('LayerNorm', {
  580. 'block': P.LayerNorm(),
  581. 'desc_inputs': [[2, 16], [16], [16]],
  582. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  583. ('LayerNormGrad', {
  584. 'block': G.LayerNormGrad(),
  585. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  586. 'desc_bprop': [[2, 16], [16], [16]],
  587. 'skip': ['backward']}),
  588. ('FusedBatchNorm', {
  589. 'block': P.FusedBatchNorm(),
  590. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  591. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  592. 'skip': []}),
  593. ('FusedBatchNormGrad', {
  594. 'block': G.FusedBatchNormGrad(),
  595. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  596. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  597. 'skip': ['backward']}),
  598. ('BatchNorm', {
  599. 'block': P.BatchNorm(),
  600. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  601. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  602. 'skip': []}),
  603. ('BatchNormGrad', {
  604. 'block': G.BatchNormGrad(),
  605. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  606. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  607. 'skip': ['backward']}),
  608. ('ApplyMomentum', {
  609. 'block': P.ApplyMomentum(),
  610. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  611. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  612. 'desc_bprop': [[128, 32, 32, 64]],
  613. 'skip': ['backward']}),
  614. ('TopK', {
  615. 'block': P.TopK(),
  616. 'desc_const': [5],
  617. 'desc_inputs': [[20, 20, 10]],
  618. 'desc_bprop': [[20, 20, 5]],
  619. 'skip': ['backward']}),
  620. ('GatherV2_0', {
  621. 'block': P.GatherV2(),
  622. 'desc_const': [0],
  623. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  624. 'desc_bprop': [[2, 1, 2]]}),
  625. ('GatherV2_1', {
  626. 'block': P.GatherV2(),
  627. 'desc_const': [2],
  628. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  629. 'desc_bprop': [[3, 1, 2]]}),
  630. ('GatherV2_2', {
  631. 'block': P.GatherV2(),
  632. 'desc_const': [0],
  633. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  634. 'desc_bprop': [[3, 2, 1, 3]]}),
  635. ('GatherV2_3', {
  636. 'block': P.GatherV2(),
  637. 'desc_const': [2],
  638. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  639. 'desc_bprop': [[3, 1, 3, 2]]}),
  640. ('GatherV2_4', {
  641. 'block': P.GatherV2(),
  642. 'desc_const': [1],
  643. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  644. 'desc_bprop': [[32, 1, 1024]]}),
  645. ('GatherV2_5', {
  646. 'block': P.GatherV2(),
  647. 'desc_const': [-1],
  648. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  649. 'desc_bprop': [[3, 1, 2]]}),
  650. ('GatherV2_6', {
  651. 'block': P.GatherV2(),
  652. 'desc_const': [0],
  653. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  654. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  655. ('UnsortedSegmentSum', {
  656. 'block': P.UnsortedSegmentSum(),
  657. 'desc_const': [1280],
  658. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  659. 'desc_bprop': [[8192,1024]],
  660. 'skip': ['backward']}),
  661. ('UnsortedSegmentSum_1', {
  662. 'block': P.UnsortedSegmentSum(),
  663. 'desc_const': [4],
  664. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  665. 'desc_bprop': [[4, 1, 3]],
  666. 'skip': ['backward']}),
  667. ('DropoutGenMask', {
  668. 'block': P.DropoutGenMask(),
  669. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  670. 'desc_inputs': [],
  671. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  672. 'skip': ['backward']}),
  673. ('DropoutDoMask', {
  674. 'block': P.DropoutDoMask(),
  675. 'desc_const': [Tensor(0.5)],
  676. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  677. 'desc_bprop': [[64, 12, 128, 128]]}),
  678. ('Dropout', {
  679. 'block': nn.Dropout(0.5),
  680. 'desc_inputs': [[64, 12, 128, 128]],
  681. 'desc_bprop': [[64, 12, 128, 128]]}),
  682. ('ReduceMean0', {
  683. 'block': P.ReduceMean(),
  684. 'desc_const': [(2,)],
  685. 'desc_inputs': [[3, 2, 2]],
  686. 'desc_bprop': [[3, 2]]}),
  687. ('ReduceMean1', {
  688. 'block': P.ReduceMean(),
  689. 'desc_const': [2],
  690. 'desc_inputs': [[3, 2, 2]],
  691. 'desc_bprop': [[3, 2]]}),
  692. ('All', {
  693. 'block': P.ReduceAll(),
  694. 'desc_const': [(1,)],
  695. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  696. 'desc_bprop': [[3]],
  697. 'skip': ['backward']}),
  698. ('DescConst', {
  699. 'block': Tensor(np.array([2], np.float32)),
  700. 'desc_inputs': [],
  701. 'desc_bprop': [[1]],
  702. 'skip': ['backward'],
  703. 'add_fake_input': True}),
  704. ('Fill', {
  705. 'block': P.Fill(),
  706. 'desc_const': [mstype.float32, (2, 3), 1.0],
  707. 'desc_inputs': [],
  708. 'desc_bprop': [[2, 3]],
  709. 'skip': ['backward'],
  710. 'add_fake_input': True}),
  711. ('OnesLike', {
  712. 'block': P.OnesLike(),
  713. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  714. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  715. }),
  716. ('ZerosLike', {
  717. 'block': P.ZerosLike(),
  718. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  719. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  720. }),
  721. ('Softmax', {
  722. 'block': P.Softmax(),
  723. 'desc_inputs': [[5, 5]],
  724. 'desc_bprop': [[5, 5]]}),
  725. ('DepthwiseConv2dNative_1', {
  726. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  727. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  728. 'desc_bprop': [[10, 30, 16, 16]]}),
  729. ('DepthwiseConv2dNative_2', {
  730. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  731. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  732. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  733. ('SigmoidCrossEntropyWithLogits', {
  734. 'block': P.SigmoidCrossEntropyWithLogits(),
  735. 'desc_inputs': [[128, 10], [128, 10]],
  736. 'desc_bprop': [[128, 10]]}),
  737. ('Pad', {
  738. 'block': P.Pad(((1, 2), (2, 3))),
  739. 'desc_inputs': [[7, 7]],
  740. 'desc_bprop': [[10, 12]]}),
  741. ('BinaryCrossEntropy', {
  742. 'block': P.BinaryCrossEntropy(),
  743. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  744. 'desc_bprop': []}),
  745. ('SparseApplyAdagrad', {
  746. 'block': P.SparseApplyAdagrad(0.5),
  747. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  748. 'desc_bprop': [3, 3],
  749. 'skip': ['backward']}),
  750. ('Flatten_1', {
  751. 'block': NetForFlatten(),
  752. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  753. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  754. 'skip': ['backward']}),
  755. ('Flatten_2', {
  756. 'block': NetForFlatten(),
  757. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  758. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  759. 'skip': ['backward']}),
  760. ('ArgmaxNet', {
  761. 'block': ArgmaxNet(),
  762. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  763. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  764. 'skip': ['backward']}),
  765. ('ArgminNet', {
  766. 'block': ArgminNet(),
  767. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  768. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  769. 'skip': ['backward']}),
  770. ('CumSumNet', {
  771. 'block': CumSumNet(),
  772. 'desc_const': [0],
  773. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  774. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  775. ('OneHot', {
  776. 'block': P.OneHot(),
  777. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  778. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  779. 'desc_bprop': [[64, 2]]}),
  780. ('ReduceProd_0', {
  781. 'block': P.ReduceProd(),
  782. 'desc_const': [0],
  783. 'desc_inputs': [[3, 2]],
  784. 'desc_bprop': [[2]]}),
  785. ('ReduceProd_1', {
  786. 'block': P.ReduceProd(keep_dims=True),
  787. 'desc_const': [0],
  788. 'desc_inputs': [[3, 2]],
  789. 'desc_bprop': [[1, 2]]}),
  790. ('CumProd', {
  791. 'block': P.CumProd(),
  792. 'desc_const': [0],
  793. 'desc_inputs': [[3, 2]],
  794. 'desc_bprop': [[3, 2]]}),
  795. ('ApplyFtrl', {
  796. 'block': P.ApplyFtrl(),
  797. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  798. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  799. 'desc_bprop': [3, 3],
  800. 'skip': ['backward']}),
  801. ('ApplyRMSProp', {
  802. 'block': P.ApplyRMSProp(),
  803. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  804. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  805. 'desc_bprop': [3, 3],
  806. 'skip': ['backward']}),
  807. ('ApplyCenteredRMSProp', {
  808. 'block': P.ApplyCenteredRMSProp(),
  809. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  810. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  811. 'desc_bprop': [3, 3],
  812. 'skip': ['backward']}),
  813. ]
  814. test_case_array_ops = [
  815. ('SpaceToDepth', {
  816. 'block': P.SpaceToDepth(2),
  817. 'desc_inputs': [[1, 3, 2, 2]],
  818. 'desc_bprop': [[1, 12, 1, 1]]}),
  819. ('DepthToSpace', {
  820. 'block': P.DepthToSpace(2),
  821. 'desc_inputs': [[1, 12, 1, 1]],
  822. 'desc_bprop': [[1, 3, 2, 2]]}),
  823. ('Split', {
  824. 'block': P.Split(1, 2),
  825. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  826. 'skip': ['backward']}),
  827. ('Argmax', {
  828. 'block': P.Argmax(),
  829. 'desc_inputs': [[128, 32, 32, 64]],
  830. 'desc_bprop': [0],
  831. 'skip': ['backward']}),
  832. ('Argmin', {
  833. 'block': P.Argmin(),
  834. 'desc_inputs': [[128, 32, 32, 64]],
  835. 'desc_bprop': [1],
  836. 'skip': ['backward']}),
  837. ('ArgMaxWithValue', {
  838. 'block': P.ArgMaxWithValue(),
  839. 'desc_inputs': [[128, 32, 32, 64]],
  840. 'desc_bprop': [[1], [1]],
  841. 'skip': ['backward']}),
  842. ('ArgMinWithValue', {
  843. 'block': P.ArgMinWithValue(),
  844. 'desc_inputs': [[128, 32, 32, 64]],
  845. 'desc_bprop': [[1], [1]],
  846. 'skip': ['backward']}),
  847. ('Transpose_dim3', {
  848. 'block': P.Transpose(),
  849. 'desc_const': [(0, 2, 1)],
  850. 'desc_inputs': [[1, 2, 3]],
  851. 'desc_bprop': [[1, 3, 2]]}),
  852. ('Transpose_dim4', {
  853. 'block': P.Transpose(),
  854. 'desc_const': [(0, 1, 2, 3)],
  855. 'desc_inputs': [[1, 2, 3, 4]],
  856. 'desc_bprop': [[1, 2, 4, 3]]}),
  857. ('AddN', {
  858. 'block': NetForTupleInput(P.AddN()),
  859. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  860. 'desc_bprop': [[2, 3, 3, 5]],
  861. 'skip': ['backward']}),
  862. ('Shape', {
  863. 'block': P.Shape(),
  864. 'desc_inputs': [[3, 3, 2, 2]],
  865. 'skip': ['backward']}),
  866. ('Reshape', {
  867. 'block': P.Reshape(),
  868. 'desc_const': [(64,)],
  869. 'desc_inputs': [[64, 1]],
  870. 'desc_bprop': [[64]]}),
  871. ('Cast', {
  872. 'block': P.Cast(),
  873. 'desc_const': [mstype.int32],
  874. 'desc_inputs': [[2, 3, 4, 5]],
  875. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  876. ('ExpandDims', {
  877. 'block': P.ExpandDims(),
  878. 'desc_const': [0],
  879. 'desc_inputs': [[2, 2]],
  880. 'desc_bprop': [[1, 2, 2]]}),
  881. ('ExpandDims_1', {
  882. 'block': P.ExpandDims(),
  883. 'desc_const': [-1],
  884. 'desc_inputs': [[2, 2]],
  885. 'desc_bprop': [[2, 2, 1]]}),
  886. ('Squeeze', {
  887. 'block': P.Squeeze(2),
  888. 'desc_inputs': [[3, 2, 1]],
  889. 'desc_bprop': [[3, 2]]}),
  890. ('Squeeze_0', {
  891. 'block': P.Squeeze(),
  892. 'desc_inputs': [[3, 1, 2, 1]],
  893. 'desc_bprop': [[3, 2]]}),
  894. ('Squeeze_1', {
  895. 'block': P.Squeeze(),
  896. 'desc_inputs': [[1, 1, 1, 1]],
  897. 'desc_bprop': [1.0],
  898. 'skip': ['backward']}),
  899. ('Squeeze_2', {
  900. 'block': P.Squeeze((2, 3)),
  901. 'desc_inputs': [[3, 2, 1, 1]],
  902. 'desc_bprop': [[3, 2]]}),
  903. ('Size', {
  904. 'block': P.Size(),
  905. 'desc_inputs': [[2, 3, 5]],
  906. 'skip': ['backward']}),
  907. ('Tile_0', {
  908. 'block': P.Tile(),
  909. 'desc_const': [(1, 2)],
  910. 'desc_inputs': [[64, 1]],
  911. 'desc_bprop': [[64, 2]]}),
  912. ('Tile_1', {
  913. 'block': P.Tile(),
  914. 'desc_const': [(1, 1)],
  915. 'desc_inputs': [[64, 1]],
  916. 'desc_bprop': [[64, 1]]}),
  917. ('Tile_2', {
  918. 'block': P.Tile(),
  919. 'desc_const': [(2, 1, 1, 2)],
  920. 'desc_inputs': [[2, 2, 2]],
  921. 'desc_bprop': [[2, 2, 2, 4]]}),
  922. ('ConcatV2_0', {
  923. 'block': P.Concat(),
  924. 'desc_inputs': [
  925. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  926. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  927. 'desc_bprop': [[4, 2]]}),
  928. ('ConcatV2_1', {
  929. 'block': P.Concat(axis=2),
  930. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  931. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  932. 'desc_bprop': [[2, 1, 5]]}),
  933. ('ConcatV2_2', {
  934. 'block': NetForConcat(),
  935. 'desc_inputs': [[2, 2]],
  936. 'desc_bprop': [[4, 2]]}),
  937. ('ConcatV2_3', {
  938. 'block': NetForConcat1(),
  939. 'desc_inputs': [[2, 2], [2, 2]],
  940. 'desc_bprop': [[4, 2]]}),
  941. ('ConcatV2_4', {
  942. 'block': P.Concat(axis=0),
  943. 'desc_inputs': [
  944. (Tensor(np.ones((3, 2, 3), np.float32)),
  945. Tensor(np.ones((5, 2, 3), np.float32)),
  946. Tensor(np.ones((6, 2, 3), np.float32)))],
  947. 'desc_bprop': [[14, 2, 3]]}),
  948. ('ConcatV2_5', {
  949. 'block': P.Concat(axis=-1),
  950. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  951. Tensor(np.array([1], np.float32)),
  952. Tensor(np.array([1], np.float32)))],
  953. 'desc_bprop': [[3,]]}),
  954. ('Pack_0', {
  955. 'block': NetForPackInput(P.Pack()),
  956. 'desc_inputs':[[2, 2], [2, 2], [2, 2]],
  957. 'desc_bprop':[[3, 2, 2]],
  958. }),
  959. ('Pack_1', {
  960. 'block': NetForPackInput(P.Pack(axis=-2)),
  961. 'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  962. 'desc_bprop':[[3, 2, 3, 3]],
  963. }),
  964. ('Pack_2', {
  965. 'block': NetForPackInput(P.Pack()),
  966. 'desc_inputs':[[2, 2]],
  967. 'desc_bprop':[[2, 2, 2]],
  968. }),
  969. ('Pack_3', {
  970. 'block': NetForPackInput(P.Pack()),
  971. 'desc_inputs':[[128, 128], [128, 128]],
  972. 'desc_bprop':[[2, 128, 128]],
  973. }),
  974. ('Unpack_0', {
  975. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  976. 'desc_inputs':[[2, 4]],
  977. 'desc_bprop':[[4], [4]],
  978. }),
  979. ('Unpack_1', {
  980. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  981. 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
  982. 'desc_bprop':[[1], [1], [1]],
  983. }),
  984. ('Diag', {
  985. 'block': P.Diag(),
  986. 'desc_inputs': [[4]],
  987. 'desc_bprop': [[4, 4]],
  988. }),
  989. ('DiagPart', {
  990. 'block': P.DiagPart(),
  991. 'desc_inputs': [[4, 4]],
  992. 'desc_bprop': [[4]],
  993. }),
  994. ('SpaceToBatch_1', {
  995. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  996. 'desc_inputs': [[1, 3, 2, 2]],
  997. 'desc_bprop': [[4, 3, 1, 1]],
  998. }),
  999. ('SpaceToBatch_2', {
  1000. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1001. 'desc_inputs': [[1, 3, 2, 2]],
  1002. 'desc_bprop': [[4, 3, 2, 4]],
  1003. }),
  1004. ('BatchToSpace_1', {
  1005. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1006. 'desc_inputs': [[4, 3, 1, 1]],
  1007. 'desc_bprop': [[1, 3, 2, 2]],
  1008. }),
  1009. ('BatchToSpace_2', {
  1010. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1011. 'desc_inputs': [[4, 3, 1, 1]],
  1012. 'desc_bprop': [[1, 3, 2, 1]],
  1013. }),
  1014. ]
  1015. test_case_other_ops = [
  1016. ('ScalarLog', {
  1017. 'block': F.scalar_log,
  1018. 'desc_const': [0.0],
  1019. 'desc_inputs': [],
  1020. 'desc_bprop': [1],
  1021. 'skip': ['backward']}),
  1022. ('BoundingBoxEncode', {
  1023. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1024. 'desc_inputs': [[256, 4], [256, 4]],
  1025. 'desc_bprop': [[256, 4]],
  1026. 'skip': ['backward']}),
  1027. ('BoundingBoxDecode', {
  1028. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1029. 'desc_inputs': [[256, 4], [256, 4]],
  1030. 'desc_bprop': [[256, 4]],
  1031. 'skip': ['backward']}),
  1032. ('GatherNd', {
  1033. 'block': P.GatherNd(),
  1034. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1035. Tensor(np.ones((2, 4), np.int32))),
  1036. 'desc_bprop': [[2]]}),
  1037. ('ScatterNdUpdate', {
  1038. 'block': P.ScatterNdUpdate(),
  1039. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1040. Tensor(np.ones((2, 2), np.int32)),
  1041. Tensor(np.ones((2,), np.float32))),
  1042. 'desc_bprop': [[2, 3]]}),
  1043. ('ScatterNd', {
  1044. 'block': P.ScatterNd(),
  1045. 'desc_const': [(3, 3)],
  1046. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1047. Tensor(np.ones((2,), np.int32))),
  1048. 'desc_bprop': [[3, 3]]}),
  1049. ('SmoothL1Loss', {
  1050. 'block': P.SmoothL1Loss(),
  1051. 'desc_inputs': [[256, 4], [256, 4]],
  1052. 'desc_bprop': [[256, 4]]}),
  1053. ('IOU', {
  1054. 'block': P.IOU(),
  1055. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1056. 'desc_bprop': [[128, 256]]}),
  1057. ('Summary', {
  1058. 'block': SummaryNet(),
  1059. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1060. Tensor(np.array([1.2]).astype(np.float32))],
  1061. 'skip': ['backward']}),
  1062. ]
  1063. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1064. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1065. # use -k to select certain testcast
  1066. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1067. test_exec_case = test_case
  1068. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1069. 'backward' not in x[1]['skip'], test_case)
  1070. import mindspore.context as context
  1071. @non_graph_engine
  1072. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1073. def test_exec():
  1074. context.set_context(mode=context.GRAPH_MODE)
  1075. return test_exec_case
  1076. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1077. def test_backward_exec():
  1078. context.set_context(mode=context.GRAPH_MODE)
  1079. return test_backward_exec_case
  1080. raise_set = [
  1081. ('Cast_Error', {
  1082. 'block': (P.Cast(), {'exception': TypeError}),
  1083. 'desc_const': [mstype.int32],
  1084. 'desc_inputs': ['wrong input'],
  1085. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1086. ('Maximum_Error', {
  1087. 'block': (P.Maximum(), {'exception': TypeError}),
  1088. 'desc_const': [(1, 2, 3)],
  1089. 'desc_inputs': [[2, 3, 3, 5]],
  1090. 'desc_bprop': [[2, 3, 3, 5]]}),
  1091. ('Shape_error', {
  1092. 'block': (P.Shape(), {'exception': TypeError}),
  1093. 'desc_inputs': [(64, 1)],
  1094. 'desc_bprop': [[64]]}),
  1095. ('Flatten_Error', {
  1096. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1097. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1098. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1099. ]
  1100. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1101. def test_check_exception():
  1102. return raise_set