You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_vae.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test VAE interface """
  16. import numpy as np
  17. import mindspore.common.dtype as mstype
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.api import _executor
  21. from mindspore.nn.probability.dpn import VAE
  22. class Encoder(nn.Cell):
  23. def __init__(self):
  24. super(Encoder, self).__init__()
  25. self.fc1 = nn.Dense(6, 3)
  26. self.relu = nn.ReLU()
  27. def construct(self, x):
  28. x = self.fc1(x)
  29. x = self.relu(x)
  30. return x
  31. class Decoder(nn.Cell):
  32. def __init__(self):
  33. super(Decoder, self).__init__()
  34. self.fc1 = nn.Dense(3, 6)
  35. self.sigmoid = nn.Sigmoid()
  36. def construct(self, z):
  37. z = self.fc1(z)
  38. z = self.sigmoid(z)
  39. return z
  40. def test_vae():
  41. """
  42. Test the vae interface with the DNN model.
  43. """
  44. encoder = Encoder()
  45. decoder = Decoder()
  46. net = VAE(encoder, decoder, hidden_size=3, latent_size=2)
  47. input_data = Tensor(np.random.rand(32, 6), dtype=mstype.float32)
  48. _executor.compile(net, input_data)