You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_apply.py 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomApply op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.py_transforms as py_transforms
  21. import mindspore.dataset.vision.py_transforms as py_vision
  22. from mindspore import log as logger
  23. from util import visualize_list, config_get_set_seed, \
  24. config_get_set_num_parallel_workers, save_and_check_md5
  25. GENERATE_GOLDEN = False
  26. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  27. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  28. def test_random_apply_op(plot=False):
  29. """
  30. Test RandomApply in python transformations
  31. """
  32. logger.info("test_random_apply_op")
  33. # define map operations
  34. transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
  35. transforms1 = [
  36. py_vision.Decode(),
  37. py_transforms.RandomApply(transforms_list, prob=0.6),
  38. py_vision.ToTensor()
  39. ]
  40. transform1 = py_transforms.Compose(transforms1)
  41. transforms2 = [
  42. py_vision.Decode(),
  43. py_vision.ToTensor()
  44. ]
  45. transform2 = py_transforms.Compose(transforms2)
  46. # First dataset
  47. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  48. data1 = data1.map(operations=transform1, input_columns=["image"])
  49. # Second dataset
  50. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  51. data2 = data2.map(operations=transform2, input_columns=["image"])
  52. image_apply = []
  53. image_original = []
  54. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
  55. image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  56. image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  57. image_apply.append(image1)
  58. image_original.append(image2)
  59. if plot:
  60. visualize_list(image_original, image_apply)
  61. def test_random_apply_md5():
  62. """
  63. Test RandomApply op with md5 check
  64. """
  65. logger.info("test_random_apply_md5")
  66. original_seed = config_get_set_seed(10)
  67. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  68. # define map operations
  69. transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
  70. transforms = [
  71. py_vision.Decode(),
  72. # Note: using default value "prob=0.5"
  73. py_transforms.RandomApply(transforms_list),
  74. py_vision.ToTensor()
  75. ]
  76. transform = py_transforms.Compose(transforms)
  77. # Generate dataset
  78. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  79. data = data.map(operations=transform, input_columns=["image"])
  80. # check results with md5 comparison
  81. filename = "random_apply_01_result.npz"
  82. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  83. # Restore configuration
  84. ds.config.set_seed(original_seed)
  85. ds.config.set_num_parallel_workers((original_num_parallel_workers))
  86. def test_random_apply_exception_random_crop_badinput():
  87. """
  88. Test RandomApply: test invalid input for one of the transform functions,
  89. expected to raise error
  90. """
  91. logger.info("test_random_apply_exception_random_crop_badinput")
  92. original_seed = config_get_set_seed(200)
  93. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  94. # define map operations
  95. transforms_list = [py_vision.Resize([32, 32]),
  96. py_vision.RandomCrop(100), # crop size > image size
  97. py_vision.RandomRotation(30)]
  98. transforms = [
  99. py_vision.Decode(),
  100. py_transforms.RandomApply(transforms_list, prob=0.6),
  101. py_vision.ToTensor()
  102. ]
  103. transform = py_transforms.Compose(transforms)
  104. # Generate dataset
  105. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  106. data = data.map(operations=transform, input_columns=["image"])
  107. try:
  108. _ = data.create_dict_iterator(num_epochs=1).get_next()
  109. except RuntimeError as e:
  110. logger.info("Got an exception in DE: {}".format(str(e)))
  111. assert "Crop size" in str(e)
  112. # Restore configuration
  113. ds.config.set_seed(original_seed)
  114. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  115. if __name__ == '__main__':
  116. test_random_apply_op(plot=True)
  117. test_random_apply_md5()
  118. test_random_apply_exception_random_crop_badinput()