You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_autocontrast.py 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing AutoContrast op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.py_transforms as F
  22. import mindspore.dataset.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  27. GENERATE_GOLDEN = False
  28. def test_auto_contrast_py(plot=False):
  29. """
  30. Test AutoContrast
  31. """
  32. logger.info("Test AutoContrast Python Op")
  33. # Original Images
  34. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  35. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  36. F.Resize((224, 224)),
  37. F.ToTensor()])
  38. ds_original = ds.map(operations=transforms_original, input_columns="image")
  39. ds_original = ds_original.batch(512)
  40. for idx, (image, _) in enumerate(ds_original):
  41. if idx == 0:
  42. images_original = np.transpose(image, (0, 2, 3, 1))
  43. else:
  44. images_original = np.append(images_original,
  45. np.transpose(image, (0, 2, 3, 1)),
  46. axis=0)
  47. # AutoContrast Images
  48. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  49. transforms_auto_contrast = \
  50. mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  51. F.Resize((224, 224)),
  52. F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
  53. F.ToTensor()])
  54. ds_auto_contrast = ds.map(operations=transforms_auto_contrast, input_columns="image")
  55. ds_auto_contrast = ds_auto_contrast.batch(512)
  56. for idx, (image, _) in enumerate(ds_auto_contrast):
  57. if idx == 0:
  58. images_auto_contrast = np.transpose(image, (0, 2, 3, 1))
  59. else:
  60. images_auto_contrast = np.append(images_auto_contrast,
  61. np.transpose(image, (0, 2, 3, 1)),
  62. axis=0)
  63. num_samples = images_original.shape[0]
  64. mse = np.zeros(num_samples)
  65. for i in range(num_samples):
  66. mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
  67. logger.info("MSE= {}".format(str(np.mean(mse))))
  68. # Compare with expected md5 from images
  69. filename = "autocontrast_01_result_py.npz"
  70. save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
  71. if plot:
  72. visualize_list(images_original, images_auto_contrast)
  73. def test_auto_contrast_c(plot=False):
  74. """
  75. Test AutoContrast C Op
  76. """
  77. logger.info("Test AutoContrast C Op")
  78. # AutoContrast Images
  79. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  80. ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  81. python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
  82. c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
  83. transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
  84. python_op,
  85. np.array])
  86. ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
  87. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  88. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  89. if idx == 0:
  90. images_auto_contrast_py = image
  91. else:
  92. images_auto_contrast_py = np.append(images_auto_contrast_py,
  93. image,
  94. axis=0)
  95. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  96. ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  97. ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
  98. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  99. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  100. if idx == 0:
  101. images_auto_contrast_c = image
  102. else:
  103. images_auto_contrast_c = np.append(images_auto_contrast_c,
  104. image,
  105. axis=0)
  106. num_samples = images_auto_contrast_c.shape[0]
  107. mse = np.zeros(num_samples)
  108. for i in range(num_samples):
  109. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  110. logger.info("MSE= {}".format(str(np.mean(mse))))
  111. np.testing.assert_equal(np.mean(mse), 0.0)
  112. # Compare with expected md5 from images
  113. filename = "autocontrast_01_result_c.npz"
  114. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  115. if plot:
  116. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  117. def test_auto_contrast_one_channel_c(plot=False):
  118. """
  119. Test AutoContrast C op with one channel
  120. """
  121. logger.info("Test AutoContrast C Op With One Channel Images")
  122. # AutoContrast Images
  123. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  124. ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  125. python_op = F.AutoContrast()
  126. c_op = C.AutoContrast()
  127. # not using F.ToTensor() since it converts to floats
  128. transforms_op = mindspore.dataset.transforms.py_transforms.Compose(
  129. [lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
  130. F.ToPIL(),
  131. python_op,
  132. np.array])
  133. ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
  134. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  135. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  136. if idx == 0:
  137. images_auto_contrast_py = image
  138. else:
  139. images_auto_contrast_py = np.append(images_auto_contrast_py,
  140. image,
  141. axis=0)
  142. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  143. ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
  144. input_columns=["image"])
  145. ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
  146. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  147. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  148. if idx == 0:
  149. images_auto_contrast_c = image
  150. else:
  151. images_auto_contrast_c = np.append(images_auto_contrast_c,
  152. image,
  153. axis=0)
  154. num_samples = images_auto_contrast_c.shape[0]
  155. mse = np.zeros(num_samples)
  156. for i in range(num_samples):
  157. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  158. logger.info("MSE= {}".format(str(np.mean(mse))))
  159. np.testing.assert_equal(np.mean(mse), 0.0)
  160. if plot:
  161. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  162. def test_auto_contrast_mnist_c(plot=False):
  163. """
  164. Test AutoContrast C op with MNIST dataset (Grayscale images)
  165. """
  166. logger.info("Test AutoContrast C Op With MNIST Images")
  167. ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  168. ds_auto_contrast_c = ds.map(operations=C.AutoContrast(cutoff=1, ignore=(0, 255)), input_columns="image")
  169. ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  170. images = []
  171. images_trans = []
  172. labels = []
  173. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)):
  174. image_orig, label_orig = data_orig
  175. image_trans, _ = data_trans
  176. images.append(image_orig)
  177. labels.append(label_orig)
  178. images_trans.append(image_trans)
  179. # Compare with expected md5 from images
  180. filename = "autocontrast_mnist_result_c.npz"
  181. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  182. if plot:
  183. visualize_one_channel_dataset(images, images_trans, labels)
  184. def test_auto_contrast_invalid_ignore_param_c():
  185. """
  186. Test AutoContrast C Op with invalid ignore parameter
  187. """
  188. logger.info("Test AutoContrast C Op with invalid ignore parameter")
  189. try:
  190. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  191. ds = ds.map(operations=[C.Decode(),
  192. C.Resize((224, 224)),
  193. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  194. # invalid ignore
  195. ds = ds.map(operations=C.AutoContrast(ignore=255.5), input_columns="image")
  196. except TypeError as error:
  197. logger.info("Got an exception in DE: {}".format(str(error)))
  198. assert "Argument ignore with value 255.5 is not of type" in str(error)
  199. try:
  200. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  201. ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)),
  202. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  203. # invalid ignore
  204. ds = ds.map(operations=C.AutoContrast(ignore=(10, 100)), input_columns="image")
  205. except TypeError as error:
  206. logger.info("Got an exception in DE: {}".format(str(error)))
  207. assert "Argument ignore with value (10,100) is not of type" in str(error)
  208. def test_auto_contrast_invalid_cutoff_param_c():
  209. """
  210. Test AutoContrast C Op with invalid cutoff parameter
  211. """
  212. logger.info("Test AutoContrast C Op with invalid cutoff parameter")
  213. try:
  214. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  215. ds = ds.map(operations=[C.Decode(),
  216. C.Resize((224, 224)),
  217. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  218. # invalid ignore
  219. ds = ds.map(operations=C.AutoContrast(cutoff=-10.0), input_columns="image")
  220. except ValueError as error:
  221. logger.info("Got an exception in DE: {}".format(str(error)))
  222. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  223. try:
  224. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  225. ds = ds.map(operations=[C.Decode(),
  226. C.Resize((224, 224)),
  227. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  228. # invalid ignore
  229. ds = ds.map(operations=C.AutoContrast(cutoff=120.0), input_columns="image")
  230. except ValueError as error:
  231. logger.info("Got an exception in DE: {}".format(str(error)))
  232. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  233. def test_auto_contrast_invalid_ignore_param_py():
  234. """
  235. Test AutoContrast python Op with invalid ignore parameter
  236. """
  237. logger.info("Test AutoContrast python Op with invalid ignore parameter")
  238. try:
  239. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  240. ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  241. F.Resize((224, 224)),
  242. F.AutoContrast(ignore=255.5),
  243. F.ToTensor()])],
  244. input_columns=["image"])
  245. except TypeError as error:
  246. logger.info("Got an exception in DE: {}".format(str(error)))
  247. assert "Argument ignore with value 255.5 is not of type" in str(error)
  248. try:
  249. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  250. ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  251. F.Resize((224, 224)),
  252. F.AutoContrast(ignore=(10, 100)),
  253. F.ToTensor()])],
  254. input_columns=["image"])
  255. except TypeError as error:
  256. logger.info("Got an exception in DE: {}".format(str(error)))
  257. assert "Argument ignore with value (10,100) is not of type" in str(error)
  258. def test_auto_contrast_invalid_cutoff_param_py():
  259. """
  260. Test AutoContrast python Op with invalid cutoff parameter
  261. """
  262. logger.info("Test AutoContrast python Op with invalid cutoff parameter")
  263. try:
  264. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  265. ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  266. F.Resize((224, 224)),
  267. F.AutoContrast(cutoff=-10.0),
  268. F.ToTensor()])],
  269. input_columns=["image"])
  270. except ValueError as error:
  271. logger.info("Got an exception in DE: {}".format(str(error)))
  272. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  273. try:
  274. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  275. ds = ds.map(
  276. operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  277. F.Resize((224, 224)),
  278. F.AutoContrast(cutoff=120.0),
  279. F.ToTensor()])],
  280. input_columns=["image"])
  281. except ValueError as error:
  282. logger.info("Got an exception in DE: {}".format(str(error)))
  283. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  284. if __name__ == "__main__":
  285. test_auto_contrast_py(plot=True)
  286. test_auto_contrast_c(plot=True)
  287. test_auto_contrast_one_channel_c(plot=True)
  288. test_auto_contrast_mnist_c(plot=True)
  289. test_auto_contrast_invalid_ignore_param_c()
  290. test_auto_contrast_invalid_ignore_param_py()
  291. test_auto_contrast_invalid_cutoff_param_c()
  292. test_auto_contrast_invalid_cutoff_param_py()