|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_ascend_control_sink """
- import pytest
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore.ops import operations as op
- from mindspore.common import dtype as mstype
- from mindspore.common.tensor import Tensor
- from mindspore.common.parameter import Parameter
- from mindspore.common.initializer import initializer
-
-
- class ControlSimpleIf(nn.Cell):
- def __init__(self):
- super().__init__()
- self.addn = op.AddN()
-
- def construct(self, x, y, z, input1, input2):
- addn1 = self.addn([input1, input1, input1])
- addn2 = self.addn([input2, input2, input2])
- addn11 = self.addn([addn1, addn1, addn1])
- addn22 = self.addn([addn2, addn2, addn2])
- cond1 = x > y
- cond2 = y > z
- # dodge pylint
- if cond1 and cond2:
- out = self.addn([addn11, addn11])
- else:
- out = self.addn([addn22, addn22])
- out_me = self.addn([out, input1])
- return out_me
-
-
- class ControlSimpleIfWithAssign(nn.Cell):
- def __init__(self, input_shape):
- super().__init__()
- self.addn = op.AddN()
- self.assign = op.Assign()
- self.input_data = Parameter(initializer(1, input_shape, mstype.float32), name="var")
-
- def construct(self, x, y, input_data):
- if x > y:
- out = self.addn([input_data, input_data, input_data])
- else:
- out = self.assign(self.input_data, input_data)
- return out
-
-
- class ControlIfinIf(nn.Cell):
- """pass"""
-
- def construct(self, x, y):
- if x > y:
- x = x + 1
- if y < 0:
- y = y + 1
- else:
- y = y + 2
- else:
- x = x + 2
- x = x + y
- return x
-
-
- class ControlIfbyIfbyIf(nn.Cell):
- def __init__(self):
- super().__init__()
- self.addn = op.AddN()
-
- def construct(self, x, y, cond1, cond2, input_data):
- tri_in = self.addn([input_data, input_data, input_data])
- if x > y:
- addn_1 = self.addn([tri_in, tri_in])
- else:
- addn_1 = self.addn([tri_in, tri_in, tri_in])
- if cond1:
- addn_2 = self.addn([addn_1, addn_1])
- else:
- addn_2 = self.addn([addn_1, addn_1, addn_1])
- if cond2:
- out = self.addn([addn_2, addn_2, addn_2])
- else:
- out = self.addn([addn_2, addn_2])
- return out
-
-
- class ControlSimpleWhile(nn.Cell):
- def __init__(self):
- super().__init__()
- self.addn = op.AddN()
-
- def construct(self, x, y, input_data):
- out = input_data
- while x:
- out = self.addn([input_data, input_data, input_data])
- x = y
- return out
-
-
- class ControlMixedWhileIf(nn.Cell):
- def __init__(self):
- super().__init__()
- self.assign = op.Assign()
- self.var = Parameter(initializer(1, (1), mstype.float32), name="var")
-
- def construct(self, x, y, z, c2, c4):
- out = self.assign(self.var, c4)
- while x < c2:
- y = self.assign(self.var, c4)
- while y < c2 and x < c2:
- if 2 * y < c2:
- y = y + 2
- else:
- y = y + 1
- out = out + y
- z = self.assign(self.var, c4)
- while z < c2:
- z = z + 1
- out = out + z
- x = x + 1
- out = out + x
- while x < 2 * c2:
- y = self.assign(self.var, c4)
- x = x + 1
- while y < c2:
- z = self.assign(self.var, c4)
- while z < c2:
- z = z + 1
- if x < c2:
- y = y - 1
- else:
- y = y + 1
- out = out + z
- out = out + y
- out = out + x
- return out
-
-
- class AndOperation(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reduce_sum = op.ReduceSum()
-
- def construct(self, x, y):
- x_sum = self.reduce_sum(x)
- y_sum = self.reduce_sum(y)
- out = x_sum and y_sum
- return out
-
-
- class OrOperation(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reduce_sum = op.ReduceSum()
-
- def construct(self, x, y):
- x_sum = self.reduce_sum(x)
- y_sum = self.reduce_sum(y)
- out = x_sum or y_sum
- return out
-
-
- class NotOperation(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reduce_sum = op.ReduceSum()
-
- def construct(self, x):
- x_sum = self.reduce_sum(x)
- return not x_sum
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_simple_if():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(3).astype(np.float32)
- y = np.array(2).astype(np.float32)
- z = np.array(3).astype(np.float32)
- input_shape = (127, 7, 53, 31)
- input1 = np.random.randn(*input_shape).astype(np.float32)
- input2 = np.random.randn(*input_shape).astype(np.float32)
- net = ControlSimpleIf()
- output = net(Tensor(x), Tensor(y), Tensor(z), Tensor(input1), Tensor(input2))
- expect = input2 * 3 * 3 * 2 + input1
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_simple_if_with_assign():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(0).astype(np.float32)
- y = np.array(1).astype(np.float32)
- input_shape = (127, 7, 53, 31)
- input_data = np.random.randn(*input_shape).astype(np.float32)
- net = ControlSimpleIfWithAssign(input_shape)
- output = net(Tensor(x), Tensor(y), Tensor(input_data))
- expect = input_data
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_if_in_if():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(2.345678).astype(np.float32)
- y = np.array(1.234567).astype(np.float32)
- net = ControlIfinIf()
- output = net(Tensor(x), Tensor(y))
- expect = x + y + 3
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_if_by_if_by_if():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(2.345678).astype(np.float32)
- y = np.array(1.234567).astype(np.float32)
- cond1 = np.array(True).astype(np.bool)
- cond2 = np.array(False).astype(np.bool)
- input_shape = (127, 7, 53, 31)
- input_data = np.random.randn(*input_shape).astype(np.float32)
- net = ControlIfbyIfbyIf()
- output = net(Tensor(x), Tensor(y), Tensor(cond1), Tensor(cond2), Tensor(input_data))
- expect = input_data * 3 * 2 * 2 * 2
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_simple_while():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(True).astype(np.bool)
- y = np.array(False).astype(np.bool)
- input_shape = (127, 7, 53, 31)
- input_data = np.random.randn(*input_shape).astype(np.float32)
- net = ControlSimpleWhile()
- output = net(Tensor(x), Tensor(y), Tensor(input_data))
- expect = input_data * 3
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_mixed_while_if():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array(2).astype(np.int32)
- y = np.array(14).astype(np.int32)
- z = np.array(1).astype(np.int32)
- c2 = Tensor([14], mstype.int32)
- c4 = Tensor([0], mstype.int32)
- net = ControlMixedWhileIf()
- output = net(Tensor(x), Tensor(y), Tensor(z), c2, c4)
- expect = np.array(3318).astype(np.int32)
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_and_or_operation():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- x = np.array([0, 1]).astype(np.float32)
- y = np.array([0, 0]).astype(np.float32)
- net = AndOperation()
- output = net(Tensor(x), Tensor(y))
- expect = np.sum(x) and np.sum(y)
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
- net = OrOperation()
- output = net(Tensor(x), Tensor(y))
- expect = np.sum(x) or np.sum(y)
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
-
- net = NotOperation()
- output = net(Tensor(x))
- expect = not np.sum(x)
- assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
|