You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_minimum_op.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.common.dtype as mstype
  18. import mindspore.context as context
  19. from mindspore.common.tensor import Tensor
  20. from mindspore.nn import Cell
  21. from mindspore.ops import composite as C
  22. from mindspore.ops import operations as P
  23. class MinimumNet(Cell):
  24. def __init__(self):
  25. super(MinimumNet, self).__init__()
  26. self.min = P.Minimum()
  27. def construct(self, x1, x2):
  28. x = self.min(x1, x2)
  29. return x
  30. class Grad(Cell):
  31. def __init__(self, network):
  32. super(Grad, self).__init__()
  33. self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
  34. self.network = network
  35. def construct(self, x1, x2, sens):
  36. gout = self.grad(self.network)(x1, x2, sens)
  37. return gout
  38. @pytest.mark.level0
  39. @pytest.mark.platform_x86_gpu_training
  40. @pytest.mark.env_onecard
  41. def test_nobroadcast():
  42. context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
  43. x1_np = np.random.rand(3, 4).astype(np.float32)
  44. x2_np = np.random.rand(3, 4).astype(np.float32)
  45. dy_np = np.random.rand(3, 4).astype(np.float32)
  46. net = Grad(MinimumNet())
  47. output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
  48. output0_np = np.where(x1_np < x2_np, dy_np, 0)
  49. output1_np = np.where(x1_np < x2_np, 0, dy_np)
  50. assert np.allclose(output_ms[0].asnumpy(), output0_np)
  51. assert np.allclose(output_ms[1].asnumpy(), output1_np)
  52. @pytest.mark.level0
  53. @pytest.mark.platform_x86_gpu_training
  54. @pytest.mark.env_onecard
  55. def test_broadcast():
  56. context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
  57. x1_np = np.array([[[[0.659578],
  58. [0.49113268],
  59. [0.75909054],
  60. [0.71681815],
  61. [0.30421826]]],
  62. [[[0.30322495],
  63. [0.02858258],
  64. [0.06398096],
  65. [0.09519596],
  66. [0.12498625]]],
  67. [[[0.7347768],
  68. [0.166469],
  69. [0.328553],
  70. [0.54908437],
  71. [0.23673844]]]]).astype(np.float32)
  72. x2_np = np.array([[[[0.9154968, 0.29014662, 0.6492294, 0.39918253, 0.1648203, 0.00861965]],
  73. [[0.996885, 0.24152198, 0.3601213, 0.51664376, 0.7933056, 0.84706444]],
  74. [[0.75606346, 0.974512, 0.3939527, 0.69697475, 0.83400667, 0.6348955]],
  75. [[0.68492866, 0.24609096, 0.4924665, 0.22500521, 0.38474053, 0.5586104]]]]).astype(np.float32)
  76. dy_np = np.array([[[[0.42891738, 0.03434946, 0.06192983, 0.21216309, 0.37450036, 0.6619524],
  77. [0.8583447, 0.5765161, 0.1468952, 0.9975385, 0.6908136, 0.4903796],
  78. [0.68952006, 0.39336833, 0.9049695, 0.66886294, 0.2338471, 0.913618],
  79. [0.0428149, 0.6243054, 0.8519898, 0.12088962, 0.9735885, 0.45661286],
  80. [0.41563734, 0.41607043, 0.4754915, 0.32207987, 0.33823156, 0.47422352]],
  81. [[0.64478457, 0.22430937, 0.7682554, 0.46082005, 0.8938723, 0.20490853],
  82. [0.44393885, 0.08278944, 0.4734108, 0.5543551, 0.39428464, 0.44424313],
  83. [0.12612297, 0.76566416, 0.71133816, 0.81280327, 0.20583127, 0.54058075],
  84. [0.41341263, 0.48118508, 0.00401995, 0.37259838, 0.05435474, 0.5240658],
  85. [0.4081956, 0.48718935, 0.9132831, 0.67969185, 0.0119757, 0.8328054]],
  86. [[0.91695577, 0.95370644, 0.263782, 0.7477626, 0.6448147, 0.8080634],
  87. [0.15576603, 0.9104615, 0.3778708, 0.6912833, 0.2092224, 0.67462957],
  88. [0.7087075, 0.7888326, 0.4672294, 0.98221505, 0.25210258, 0.98920417],
  89. [0.7466197, 0.22702982, 0.01991269, 0.6846591, 0.7515228, 0.5890395],
  90. [0.04531088, 0.21740614, 0.8406235, 0.36480767, 0.37733936, 0.02914464]],
  91. [[0.33069974, 0.5497569, 0.9896345, 0.4167176, 0.78057563, 0.04659131],
  92. [0.7747768, 0.21427679, 0.29893255, 0.7706969, 0.9755185, 0.42388415],
  93. [0.3910244, 0.39381978, 0.37065396, 0.15558061, 0.05012341, 0.15870963],
  94. [0.17791101, 0.47219893, 0.13899496, 0.32323205, 0.3628809, 0.02580585],
  95. [0.30274773, 0.62890774, 0.11024303, 0.6980051, 0.35346958, 0.062852]]],
  96. [[[0.6925081, 0.74668753, 0.80145043, 0.06598313, 0.665123, 0.15073007],
  97. [0.11784806, 0.6385372, 0.5228278, 0.5349848, 0.84671104, 0.8096436],
  98. [0.09516156, 0.63298017, 0.52382874, 0.36734378, 0.66497755, 0.6019127],
  99. [0.46438488, 0.0194377, 0.9388292, 0.7286089, 0.29178405, 0.11872514],
  100. [0.22101837, 0.6164887, 0.6139798, 0.11711904, 0.6227745, 0.09701069]],
  101. [[0.80480653, 0.90034056, 0.8633447, 0.97415197, 0.08309154, 0.8446033],
  102. [0.9473769, 0.791024, 0.26339203, 0.01155075, 0.2673186, 0.7116369],
  103. [0.9687511, 0.24281934, 0.37777108, 0.09802654, 0.2421312, 0.87095344],
  104. [0.6311381, 0.23368953, 0.0998995, 0.4364419, 0.9187446, 0.5043872],
  105. [0.35226053, 0.09357589, 0.41317305, 0.85930043, 0.16249318, 0.5478765]],
  106. [[0.14338651, 0.24859418, 0.4246941, 0.73034066, 0.47172204, 0.8717199],
  107. [0.05415315, 0.78556925, 0.99214983, 0.7415298, 0.673708, 0.87817156],
  108. [0.616975, 0.42843062, 0.05179814, 0.1566958, 0.04536059, 0.70166487],
  109. [0.15493333, 0.776598, 0.4361967, 0.40253627, 0.89210516, 0.8144414],
  110. [0.04816005, 0.29696834, 0.4586605, 0.3419852, 0.5595613, 0.74093205]],
  111. [[0.1388035, 0.9168704, 0.64287645, 0.83864623, 0.48026922, 0.78323376],
  112. [0.12724937, 0.83034366, 0.42557436, 0.50578654, 0.25630295, 0.15349793],
  113. [0.27256685, 0.04547984, 0.5385756, 0.39270344, 0.7661698, 0.23722854],
  114. [0.24620503, 0.25431684, 0.71564585, 0.01161419, 0.846467, 0.7043044],
  115. [0.63272387, 0.11857849, 0.3772076, 0.16758402, 0.46743023, 0.05919575]]],
  116. [[[0.18827082, 0.8912264, 0.6841404, 0.74436826, 0.9582085, 0.1083683],
  117. [0.60695344, 0.09742349, 0.25074378, 0.87940735, 0.21116392, 0.39418384],
  118. [0.744686, 0.35679692, 0.01308284, 0.45166633, 0.68166, 0.8634658],
  119. [0.7331758, 0.21113694, 0.3935488, 0.87934476, 0.70728546, 0.09309767],
  120. [0.12128611, 0.93696386, 0.81177396, 0.85402405, 0.5827289, 0.9776509]],
  121. [[0.54069614, 0.66651285, 0.10646132, 0.17342485, 0.88795924, 0.03551182],
  122. [0.25531697, 0.87946486, 0.74267226, 0.89230734, 0.95171434, 0.94697934],
  123. [0.3708397, 0.507355, 0.97099817, 0.4918163, 0.17212386, 0.5008048],
  124. [0.62530744, 0.25210327, 0.73966664, 0.71555346, 0.82484317, 0.6094874],
  125. [0.4589691, 0.1386695, 0.27448782, 0.20373994, 0.27805242, 0.23292768]],
  126. [[0.7414099, 0.2270226, 0.90431255, 0.47035843, 0.9581062, 0.5359226],
  127. [0.79603523, 0.45549425, 0.80858237, 0.7705133, 0.017761, 0.98001194],
  128. [0.06013146, 0.99240226, 0.33515573, 0.04110833, 0.41470334, 0.7130743],
  129. [0.5687417, 0.5788611, 0.00722461, 0.6603336, 0.3420471, 0.75181854],
  130. [0.4699261, 0.51390815, 0.343182, 0.81498754, 0.8942413, 0.46532857]],
  131. [[0.4589523, 0.5534698, 0.2825786, 0.8205943, 0.78258514, 0.43154418],
  132. [0.27020997, 0.01667354, 0.60871965, 0.90670526, 0.3208025, 0.96995634],
  133. [0.85337156, 0.9711295, 0.1381724, 0.53670496, 0.7347996, 0.73380876],
  134. [0.6137464, 0.54751194, 0.9037335, 0.23134394, 0.61411524, 0.26583543],
  135. [0.70770144, 0.01813207, 0.24718016, 0.70329237, 0.7062925, 0.14399007]]]]).astype(np.float32)
  136. expect_dx1 = np.array([[[[5.7664223],
  137. [6.981018],
  138. [2.6029902],
  139. [2.7598202],
  140. [6.763105]]],
  141. [[[10.06558],
  142. [12.077246],
  143. [9.338394],
  144. [11.52271],
  145. [8.889048]]],
  146. [[[3.5789769],
  147. [13.424448],
  148. [8.732746],
  149. [6.9677467],
  150. [9.635765]]]]).astype(np.float32)
  151. expect_dx2 = np.array([[[[0., 4.250458, 2.5030296, 3.623167, 6.4171505, 7.2115746]],
  152. [[0., 4.367449, 2.803152, 2.5352, 0., 0.]],
  153. [[0.7087075, 0., 2.040332, 2.1372325, 0., 2.9222295]],
  154. [[1.0278877, 5.247942, 2.6855955, 5.494814, 3.5657988, 0.66265094]]]]).astype(np.float32)
  155. net = Grad(MinimumNet())
  156. output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
  157. assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
  158. assert np.allclose(output_ms[1].asnumpy(), expect_dx2)
  159. @pytest.mark.level0
  160. @pytest.mark.platform_x86_gpu_training
  161. @pytest.mark.env_onecard
  162. def test_broadcast_diff_dims():
  163. context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target='GPU')
  164. x1_np = np.array([[[0.275478, 0.48933202, 0.71846116],
  165. [0.9803821, 0.57205725, 0.28511533]],
  166. [[0.61111903, 0.9671023, 0.70624334],
  167. [0.53730786, 0.90413177, 0.94349676]]]).astype(np.float32)
  168. x2_np = np.array([[0.01045662, 0.82126397, 0.6365063],
  169. [0.9900942, 0.6584232, 0.98537433]]).astype(np.float32)
  170. dy_np = np.array([[[0.3897645, 0.61152864, 0.33675498],
  171. [0.5303635, 0.84893036, 0.4959739]],
  172. [[0.5391046, 0.8443047, 0.4174708],
  173. [0.57513475, 0.9225578, 0.46760973]]]).astype(np.float32)
  174. expect_dx1 = np.array([[[0., 0.61152864, 0.],
  175. [0.5303635, 0.84893036, 0.4959739]],
  176. [[0., 0., 0.],
  177. [0.57513475, 0., 0.46760973]]]).astype(np.float32)
  178. expect_dx2 = np.array([[0.92886907, 0.8443047, 0.7542258],
  179. [0., 0.9225578, 0.]]).astype(np.float32)
  180. net = Grad(MinimumNet())
  181. output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
  182. assert np.allclose(output_ms[0].asnumpy(), expect_dx1)
  183. assert np.allclose(output_ms[1].asnumpy(), expect_dx2)