You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 5.3 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.common.dtype as mstype
  18. import mindspore.context as context
  19. from mindspore.common.tensor import Tensor
  20. from mindspore.nn import Cell
  21. from mindspore.ops import operations as P
  22. @pytest.mark.level0
  23. @pytest.mark.platform_x86_gpu_training
  24. @pytest.mark.env_onecard
  25. def test_nobroadcast():
  26. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  27. x1_np = np.random.rand(10, 20).astype(np.float32)
  28. x2_np = np.random.rand(10, 20).astype(np.float32)
  29. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  30. output_np = np.minimum(x1_np, x2_np)
  31. assert np.allclose(output_ms.asnumpy(), output_np)
  32. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  33. output_np = np.maximum(x1_np, x2_np)
  34. assert np.allclose(output_ms.asnumpy(), output_np)
  35. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  36. output_np = x1_np > x2_np
  37. assert np.allclose(output_ms.asnumpy(), output_np)
  38. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  39. output_np = x1_np < x2_np
  40. assert np.allclose(output_ms.asnumpy(), output_np)
  41. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  42. output_np = np.power(x1_np, x2_np)
  43. assert np.allclose(output_ms.asnumpy(), output_np)
  44. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  45. output_np = x1_np / x2_np
  46. assert np.allclose(output_ms.asnumpy(), output_np)
  47. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  48. output_np = x1_np * x2_np
  49. assert np.allclose(output_ms.asnumpy(), output_np)
  50. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  51. output_np = x1_np - x2_np
  52. assert np.allclose(output_ms.asnumpy(), output_np)
  53. @pytest.mark.level0
  54. @pytest.mark.platform_x86_gpu_training
  55. @pytest.mark.env_onecard
  56. def test_broadcast():
  57. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  58. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  59. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  60. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  61. output_np = np.minimum(x1_np, x2_np)
  62. assert np.allclose(output_ms.asnumpy(), output_np)
  63. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  64. output_np = np.maximum(x1_np, x2_np)
  65. assert np.allclose(output_ms.asnumpy(), output_np)
  66. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  67. output_np = x1_np > x2_np
  68. assert np.allclose(output_ms.asnumpy(), output_np)
  69. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  70. output_np = x1_np < x2_np
  71. assert np.allclose(output_ms.asnumpy(), output_np)
  72. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  73. output_np = np.power(x1_np, x2_np)
  74. assert np.allclose(output_ms.asnumpy(), output_np)
  75. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  76. output_np = x1_np / x2_np
  77. assert np.allclose(output_ms.asnumpy(), output_np)
  78. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  79. output_np = x1_np * x2_np
  80. assert np.allclose(output_ms.asnumpy(), output_np)
  81. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  82. output_np = x1_np - x2_np
  83. assert np.allclose(output_ms.asnumpy(), output_np)
  84. @pytest.mark.level0
  85. @pytest.mark.platform_x86_gpu_training
  86. @pytest.mark.env_onecard
  87. def test_broadcast_diff_dims():
  88. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  89. x1_np = np.random.rand(2).astype(np.float32)
  90. x2_np = np.random.rand(2, 1).astype(np.float32)
  91. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  92. output_np = np.minimum(x1_np, x2_np)
  93. assert np.allclose(output_ms.asnumpy(), output_np)
  94. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  95. output_np = np.maximum(x1_np, x2_np)
  96. assert np.allclose(output_ms.asnumpy(), output_np)
  97. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  98. output_np = x1_np > x2_np
  99. assert np.allclose(output_ms.asnumpy(), output_np)
  100. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  101. output_np = x1_np < x2_np
  102. assert np.allclose(output_ms.asnumpy(), output_np)
  103. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  104. output_np = np.power(x1_np, x2_np)
  105. assert np.allclose(output_ms.asnumpy(), output_np)
  106. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  107. output_np = x1_np / x2_np
  108. assert np.allclose(output_ms.asnumpy(), output_np)
  109. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  110. output_np = x1_np * x2_np
  111. assert np.allclose(output_ms.asnumpy(), output_np)
  112. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  113. output_np = x1_np - x2_np
  114. assert np.allclose(output_ms.asnumpy(), output_np)