You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_grayscale.py 7.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomGrayscale op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.transforms.py_transforms
  20. import mindspore.dataset.vision.py_transforms as py_vision
  21. import mindspore.dataset as ds
  22. from mindspore import log as logger
  23. from util import save_and_check_md5, visualize_list, \
  24. config_get_set_seed, config_get_set_num_parallel_workers
  25. GENERATE_GOLDEN = False
  26. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  27. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  28. def test_random_grayscale_valid_prob(plot=False):
  29. """
  30. Test RandomGrayscale Op: valid input, expect to pass
  31. """
  32. logger.info("test_random_grayscale_valid_prob")
  33. # First dataset
  34. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  35. transforms1 = [
  36. py_vision.Decode(),
  37. # Note: prob is 1 so the output should always be grayscale images
  38. py_vision.RandomGrayscale(1),
  39. py_vision.ToTensor()
  40. ]
  41. transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1)
  42. data1 = data1.map(operations=transform1, input_columns=["image"])
  43. # Second dataset
  44. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  45. transforms2 = [
  46. py_vision.Decode(),
  47. py_vision.ToTensor()
  48. ]
  49. transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2)
  50. data2 = data2.map(operations=transform2, input_columns=["image"])
  51. image_gray = []
  52. image = []
  53. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
  54. data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
  55. image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  56. image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  57. image_gray.append(image1)
  58. image.append(image2)
  59. if plot:
  60. visualize_list(image, image_gray)
  61. def test_random_grayscale_input_grayscale_images():
  62. """
  63. Test RandomGrayscale Op: valid parameter with grayscale images as input, expect to pass
  64. """
  65. logger.info("test_random_grayscale_input_grayscale_images")
  66. original_seed = config_get_set_seed(0)
  67. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  68. # First dataset
  69. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  70. transforms1 = [
  71. py_vision.Decode(),
  72. py_vision.Grayscale(1),
  73. # Note: If the input images is grayscale image with 1 channel.
  74. py_vision.RandomGrayscale(0.5),
  75. py_vision.ToTensor()
  76. ]
  77. transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1)
  78. data1 = data1.map(operations=transform1, input_columns=["image"])
  79. # Second dataset
  80. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  81. transforms2 = [
  82. py_vision.Decode(),
  83. py_vision.ToTensor()
  84. ]
  85. transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2)
  86. data2 = data2.map(operations=transform2, input_columns=["image"])
  87. image_gray = []
  88. image = []
  89. for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
  90. data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
  91. image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  92. image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  93. image_gray.append(image1)
  94. image.append(image2)
  95. assert len(image1.shape) == 3
  96. assert image1.shape[2] == 1
  97. assert len(image2.shape) == 3
  98. assert image2.shape[2] == 3
  99. # Restore config
  100. ds.config.set_seed(original_seed)
  101. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  102. def test_random_grayscale_md5_valid_input():
  103. """
  104. Test RandomGrayscale with md5 comparison: valid parameter, expect to pass
  105. """
  106. logger.info("test_random_grayscale_md5_valid_input")
  107. original_seed = config_get_set_seed(0)
  108. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  109. # Generate dataset
  110. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  111. transforms = [
  112. py_vision.Decode(),
  113. py_vision.RandomGrayscale(0.8),
  114. py_vision.ToTensor()
  115. ]
  116. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  117. data = data.map(operations=transform, input_columns=["image"])
  118. # Check output images with md5 comparison
  119. filename = "random_grayscale_01_result.npz"
  120. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  121. # Restore config
  122. ds.config.set_seed(original_seed)
  123. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  124. def test_random_grayscale_md5_no_param():
  125. """
  126. Test RandomGrayscale with md5 comparison: no parameter given, expect to pass
  127. """
  128. logger.info("test_random_grayscale_md5_no_param")
  129. original_seed = config_get_set_seed(0)
  130. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  131. # Generate dataset
  132. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  133. transforms = [
  134. py_vision.Decode(),
  135. py_vision.RandomGrayscale(),
  136. py_vision.ToTensor()
  137. ]
  138. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  139. data = data.map(operations=transform, input_columns=["image"])
  140. # Check output images with md5 comparison
  141. filename = "random_grayscale_02_result.npz"
  142. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  143. # Restore config
  144. ds.config.set_seed(original_seed)
  145. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  146. def test_random_grayscale_invalid_param():
  147. """
  148. Test RandomGrayscale: invalid parameter given, expect to raise error
  149. """
  150. logger.info("test_random_grayscale_invalid_param")
  151. # Generate dataset
  152. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  153. try:
  154. transforms = [
  155. py_vision.Decode(),
  156. py_vision.RandomGrayscale(1.5),
  157. py_vision.ToTensor()
  158. ]
  159. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  160. data = data.map(operations=transform, input_columns=["image"])
  161. except ValueError as e:
  162. logger.info("Got an exception in DE: {}".format(str(e)))
  163. assert "Input prob is not within the required interval of (0.0 to 1.0)." in str(e)
  164. if __name__ == "__main__":
  165. test_random_grayscale_valid_prob(True)
  166. test_random_grayscale_input_grayscale_images()
  167. test_random_grayscale_md5_valid_input()
  168. test_random_grayscale_md5_no_param()
  169. test_random_grayscale_invalid_param()