You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. '''
  16. ##############train models#################
  17. python train.py
  18. '''
  19. import argparse
  20. from mindspore import context, nn
  21. from mindspore.train import Model
  22. from mindspore.common import set_seed
  23. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  26. from src.dataset import create_dataset
  27. from src.musictagger import MusicTaggerCNN
  28. from src.loss import BCELoss
  29. from src.config import music_cfg as cfg
  30. def train(model, dataset_direct, filename, columns_list, num_consumer=4,
  31. batch=16, epoch=50, save_checkpoint_steps=2172, keep_checkpoint_max=50,
  32. prefix="model", directory='./'):
  33. """
  34. train network
  35. """
  36. config_ck = CheckpointConfig(save_checkpoint_steps=save_checkpoint_steps,
  37. keep_checkpoint_max=keep_checkpoint_max)
  38. ckpoint_cb = ModelCheckpoint(prefix=prefix,
  39. directory=directory,
  40. config=config_ck)
  41. data_train = create_dataset(dataset_direct, filename, batch, columns_list,
  42. num_consumer)
  43. model.train(epoch,
  44. data_train,
  45. callbacks=[
  46. ckpoint_cb,
  47. LossMonitor(per_print_times=181),
  48. TimeMonitor()
  49. ],
  50. dataset_sink_mode=True)
  51. if __name__ == "__main__":
  52. set_seed(1)
  53. parser = argparse.ArgumentParser(description='Train model')
  54. parser.add_argument('--device_id',
  55. type=int,
  56. help='device ID',
  57. default=None)
  58. args = parser.parse_args()
  59. if args.device_id is not None:
  60. context.set_context(device_target='Ascend',
  61. mode=context.GRAPH_MODE,
  62. device_id=args.device_id)
  63. else:
  64. context.set_context(device_target='Ascend',
  65. mode=context.GRAPH_MODE,
  66. device_id=cfg.device_id)
  67. context.set_context(enable_auto_mixed_precision=cfg.mixed_precision)
  68. network = MusicTaggerCNN(in_classes=[1, 128, 384, 768, 2048],
  69. kernel_size=[3, 3, 3, 3, 3],
  70. padding=[0] * 5,
  71. maxpool=[(2, 4), (4, 5), (3, 8), (4, 8)],
  72. has_bias=True)
  73. if cfg.pre_trained:
  74. param_dict = load_checkpoint(cfg.checkpoint_path + '/' +
  75. cfg.model_name)
  76. load_param_into_net(network, param_dict)
  77. net_loss = BCELoss()
  78. network.set_train(True)
  79. net_opt = nn.Adam(params=network.trainable_params(),
  80. learning_rate=cfg.lr,
  81. loss_scale=cfg.loss_scale)
  82. loss_scale_manager = FixedLossScaleManager(loss_scale=cfg.loss_scale,
  83. drop_overflow_update=False)
  84. net_model = Model(network, net_loss, net_opt, loss_scale_manager=loss_scale_manager)
  85. train(model=net_model,
  86. dataset_direct=cfg.data_dir,
  87. filename=cfg.train_filename,
  88. columns_list=['feature', 'label'],
  89. num_consumer=cfg.num_consumer,
  90. batch=cfg.batch_size,
  91. epoch=cfg.epoch_size,
  92. save_checkpoint_steps=cfg.save_step,
  93. keep_checkpoint_max=cfg.keep_checkpoint_max,
  94. prefix=cfg.prefix,
  95. directory=cfg.checkpoint_path + "_{}".format(cfg.device_id))
  96. print("train success")