You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_gather_v2.py 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore as ms
  17. from mindspore import Tensor
  18. from mindspore import context
  19. import mindspore.nn as nn
  20. from mindspore.ops import operations as P
  21. from mindspore.ops import composite as C
  22. from mindspore.common import dtype as mstype
  23. from mindspore.common.api import _executor
  24. from tests.ut.python.ops.test_math_ops import VirtualLoss
  25. class NetWithLoss(nn.Cell):
  26. def __init__(self, network):
  27. super(NetWithLoss, self).__init__()
  28. self.loss = VirtualLoss()
  29. self.network = network
  30. def construct(self, x, y):
  31. predict = self.network(x, y)
  32. return self.loss(predict)
  33. class GradWrap(nn.Cell):
  34. def __init__(self, network):
  35. super(GradWrap, self).__init__()
  36. self.network = network
  37. def construct(self, x, y):
  38. return C.grad_all(self.network)(x, y)
  39. class Net(nn.Cell):
  40. def __init__(self, axis=0, strategy1=None, strategy2=None, shape=[64, 64]):
  41. super().__init__()
  42. self.gatherv2 = P.GatherV2().set_strategy(strategy1)
  43. self.mul = P.Mul().set_strategy(strategy2)
  44. self.index = Tensor(np.ones(shape), dtype=ms.int32)
  45. self.axis = axis
  46. def construct(self, x, y):
  47. out = self.gatherv2(x, self.index, self.axis)
  48. out = self.mul(out, y)
  49. return out
  50. def test_gatherv2_semi_auto0():
  51. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  52. strategy1 = ((1, 8), )
  53. strategy2 = ((4, 2, 1), (4, 2, 1))
  54. net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
  55. net.set_auto_parallel()
  56. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  57. y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  58. _executor.compile(net, x, y)
  59. def test_gatherv2_semi_auto1():
  60. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  61. strategy1 = ((8, 1), )
  62. strategy2 = ((4, 2, 1), (4, 2, 1))
  63. net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
  64. net.set_auto_parallel()
  65. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  66. y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  67. _executor.compile(net, x, y)
  68. def test_gatherv2_semi_auto2():
  69. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  70. strategy1 = ((2, 4), )
  71. strategy2 = ((4, 2, 1), (4, 2, 1))
  72. net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
  73. net.set_auto_parallel()
  74. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  75. y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  76. _executor.compile(net, x, y)
  77. def test_gatherv2_semi_auto3():
  78. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  79. strategy1 = ((1, 8), )
  80. strategy2 = ((4, 2, 1), (4, 2, 1))
  81. net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
  82. net.set_auto_parallel()
  83. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  84. y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
  85. _executor.compile(net, x, y)
  86. def test_gatherv2_semi_auto4():
  87. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  88. strategy1 = ((8, 1), )
  89. strategy2 = ((4, 2, 1), (4, 2, 1))
  90. net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
  91. net.set_auto_parallel()
  92. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  93. y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
  94. _executor.compile(net, x, y)
  95. def test_gatherv2_semi_auto5():
  96. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  97. strategy1 = ((2, 4), )
  98. strategy2 = ((4, 2, 1), (4, 2, 1))
  99. net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
  100. net.set_auto_parallel()
  101. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  102. y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
  103. _executor.compile(net, x, y)
  104. def test_gatherv2_semi_auto6():
  105. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  106. strategy2 = ((4, 2, 1), (4, 2, 1))
  107. net = GradWrap(NetWithLoss(Net(0, None, strategy2)))
  108. net.set_auto_parallel()
  109. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  110. y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  111. _executor.compile(net, x, y)
  112. def test_gatherv2_semi_auto7():
  113. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  114. strategy2 = ((4, 2, 1), (4, 2, 1))
  115. net = GradWrap(NetWithLoss(Net(1, None, strategy2)))
  116. net.set_auto_parallel()
  117. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  118. y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
  119. _executor.compile(net, x, y)
  120. def test_gatherv2_semi_auto8():
  121. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
  122. strategy1 = ((8, ), )
  123. strategy2 = ((4, 2), (4, 2))
  124. net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
  125. net.set_auto_parallel()
  126. x = Tensor(np.ones([64]), dtype=ms.float32)
  127. y = Tensor(np.ones([64, 64]), dtype=ms.float32)
  128. _executor.compile(net, x, y)
  129. def test_gatherv2_auto0():
  130. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
  131. net = GradWrap(NetWithLoss(Net(0)))
  132. net.set_auto_parallel()
  133. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  134. y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  135. _executor.compile(net, x, y)
  136. def test_gatherv2_auto1():
  137. context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
  138. net = GradWrap(NetWithLoss(Net(1)))
  139. net.set_auto_parallel()
  140. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  141. y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
  142. _executor.compile(net, x, y)