You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_array_ops.py 9.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test array ops """
  16. import functools
  17. import pytest
  18. import numpy as np
  19. import mindspore as ms
  20. from mindspore import Tensor
  21. from mindspore.nn import Cell
  22. from mindspore.ops import operations as P
  23. from mindspore.ops import prim_attr_register
  24. from mindspore.common import dtype as mstype
  25. from mindspore.ops.primitive import Primitive, PrimitiveWithInfer
  26. from mindspore._c_expression import signature_dtype as sig_dtype
  27. from mindspore._c_expression import signature_rw as sig_rw
  28. from mindspore._c_expression import signature_kind as sig_kind
  29. from ..ut_filter import non_graph_engine
  30. from ....mindspore_test_framework.mindspore_test import mindspore_test
  31. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  32. import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
  33. from ....mindspore_test_framework.pipeline.forward.verify_exception \
  34. import pipeline_for_verify_exception_for_case_by_case_config
  35. def test_expand_dims():
  36. input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
  37. expand_dims = P.ExpandDims()
  38. output = expand_dims(input_tensor, 0)
  39. assert output.asnumpy().shape == (1, 2, 2)
  40. def test_cast():
  41. input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
  42. input_x = Tensor(input_np)
  43. td = ms.int32
  44. cast = P.Cast()
  45. result = cast(input_x, td)
  46. expect = input_np.astype(np.int32)
  47. assert np.all(result.asnumpy() == expect)
  48. @non_graph_engine
  49. def test_reshape():
  50. input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
  51. shp = (3, 2)
  52. reshape = P.Reshape()
  53. output = reshape(input_tensor, shp)
  54. assert output.asnumpy().shape == (3, 2)
  55. def test_transpose():
  56. input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
  57. perm = (0, 2, 1)
  58. expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
  59. transpose = P.Transpose()
  60. output = transpose(input_tensor, perm)
  61. assert np.all(output.asnumpy() == expect)
  62. def test_squeeze():
  63. input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
  64. squeeze = P.Squeeze(2)
  65. output = squeeze(input_tensor)
  66. assert output.asnumpy().shape == (3, 2)
  67. def test_invert_permutation():
  68. invert_permutation = P.InvertPermutation()
  69. x = (3, 4, 0, 2, 1)
  70. output = invert_permutation(x)
  71. expect = (2, 4, 3, 0, 1)
  72. assert np.all(output == expect)
  73. def test_select():
  74. select = P.Select()
  75. cond = Tensor(np.array([[True, False, False], [False, True, True]]))
  76. x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
  77. y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]))
  78. output = select(cond, x, y)
  79. expect = np.array([[1, 8, 9], [10, 5, 6]])
  80. assert np.all(output.asnumpy() == expect)
  81. def test_argmin_invalid_output_type():
  82. P.Argmin(-1, mstype.int64)
  83. P.Argmin(-1, mstype.int32)
  84. with pytest.raises(TypeError):
  85. P.Argmin(-1, mstype.float32)
  86. with pytest.raises(TypeError):
  87. P.Argmin(-1, mstype.float64)
  88. with pytest.raises(TypeError):
  89. P.Argmin(-1, mstype.uint8)
  90. with pytest.raises(TypeError):
  91. P.Argmin(-1, mstype.bool_)
  92. class CustomOP(PrimitiveWithInfer):
  93. __mindspore_signature__ = (sig_dtype.T, sig_dtype.T, sig_dtype.T1,
  94. sig_dtype.T1, sig_dtype.T2, sig_dtype.T2,
  95. sig_dtype.T2, sig_dtype.T3, sig_dtype.T4)
  96. @prim_attr_register
  97. def __init__(self):
  98. pass
  99. def __call__(self, p1, p2, p3, p4, p5, p6, p7, p8, p9):
  100. raise NotImplementedError
  101. class CustomOP2(PrimitiveWithInfer):
  102. __mindspore_signature__ = (
  103. ('p1', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  104. ('p2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  105. ('p3', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
  106. )
  107. @prim_attr_register
  108. def __init__(self):
  109. pass
  110. def __call__(self, p1, p2, p3):
  111. raise NotImplementedError
  112. class CustNet1(Cell):
  113. def __init__(self):
  114. super(CustNet1, self).__init__()
  115. self.op = CustomOP()
  116. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  117. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  118. self.int1 = 3
  119. self.float1 = 5.1
  120. def construct(self):
  121. x =self.op(self.t1, self.t1, self.int1,
  122. self.float1, self.int1, self.float1,
  123. self.t2, self.t1, self.int1)
  124. return x
  125. class CustNet2(Cell):
  126. def __init__(self):
  127. super(CustNet2, self).__init__()
  128. self.op = CustomOP2()
  129. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  130. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  131. self.int1 = 3
  132. def construct(self):
  133. return self.op(self.t1, self.t2, self.int1)
  134. class CustNet3(Cell):
  135. def __init__(self):
  136. super(CustNet3, self).__init__()
  137. self.op = P.ReduceSum()
  138. self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
  139. self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
  140. self.t2 = 1
  141. def construct(self):
  142. return self.op(self.t1, self.t2)
  143. class MathBinaryNet1(Cell):
  144. def __init__(self):
  145. super(MathBinaryNet1, self).__init__()
  146. self.add = P.TensorAdd()
  147. self.mul = P.Mul()
  148. self.max = P.Maximum()
  149. self.number = 3
  150. def construct(self, x):
  151. return self.add(x, self.number) + self.mul(x, self.number) + self.max(x, self.number)
  152. class MathBinaryNet2(Cell):
  153. def __init__(self):
  154. super(MathBinaryNet2, self).__init__()
  155. self.less_equal = P.LessEqual()
  156. self.greater = P.Greater()
  157. self.logic_or = P.LogicalOr()
  158. self.logic_and = P.LogicalAnd()
  159. self.number = 3
  160. self.flag = True
  161. def construct(self, x):
  162. ret_less_equal = self.logic_and(self.less_equal(x, self.number), self.flag)
  163. ret_greater = self.logic_or(self.greater(x, self.number), self.flag)
  164. return self.logic_or(ret_less_equal, ret_greater)
  165. class BatchToSpaceNet(Cell):
  166. def __init__(self):
  167. super(BatchToSpaceNet, self).__init__()
  168. block_size = 2
  169. crops = [[0, 0], [0, 0]]
  170. self.batch_to_space = P.BatchToSpace(block_size, crops)
  171. def construct(self, x):
  172. return self.batch_to_space(x)
  173. class SpaceToBatchNet(Cell):
  174. def __init__(self):
  175. super(SpaceToBatchNet, self).__init__()
  176. block_size = 2
  177. paddings = [[0, 0], [0, 0]]
  178. self.space_to_batch = P.SpaceToBatch(block_size, paddings)
  179. def construct(self, x):
  180. return self.space_to_batch(x)
  181. test_case_array_ops = [
  182. ('CustNet1', {
  183. 'block': CustNet1(),
  184. 'desc_inputs': []}),
  185. ('CustNet2', {
  186. 'block': CustNet2(),
  187. 'desc_inputs': []}),
  188. ('CustNet3', {
  189. 'block': CustNet3(),
  190. 'desc_inputs': []}),
  191. ('MathBinaryNet1', {
  192. 'block': MathBinaryNet1(),
  193. 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
  194. ('MathBinaryNet2', {
  195. 'block': MathBinaryNet2(),
  196. 'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
  197. ('BatchToSpaceNet', {
  198. 'block': BatchToSpaceNet(),
  199. 'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
  200. ('SpaceToBatchNet', {
  201. 'block': SpaceToBatchNet(),
  202. 'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
  203. ]
  204. test_case_lists = [test_case_array_ops]
  205. test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  206. # use -k to select certain testcast
  207. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  208. import mindspore.context as context
  209. @non_graph_engine
  210. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  211. def test_exec():
  212. context.set_context(mode=context.GRAPH_MODE)
  213. return test_exec_case
  214. raise_set = [
  215. ('Squeeze_1_Error', {
  216. 'block': (lambda x: P.Squeeze(axis=1.2), {'exception': TypeError}),
  217. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  218. ('Squeeze_2_Error', {
  219. 'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': TypeError}),
  220. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  221. ('ReduceSum_Error', {
  222. 'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
  223. 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
  224. ]
  225. @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
  226. def test_check_exception():
  227. return raise_set