You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_lamb.py 2.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test lamb """
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor, Parameter
  19. from mindspore.common.api import _executor
  20. from mindspore.nn import TrainOneStepCell, WithLossCell
  21. from mindspore.nn.optim import Lamb
  22. from mindspore.ops import operations as P
  23. class Net(nn.Cell):
  24. """ Net definition """
  25. def __init__(self):
  26. super(Net, self).__init__()
  27. self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
  28. self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
  29. self.matmul = P.MatMul()
  30. self.biasAdd = P.BiasAdd()
  31. def construct(self, x):
  32. x = self.biasAdd(self.matmul(x, self.weight), self.bias)
  33. return x
  34. class NetWithoutWeight(nn.Cell):
  35. """ NetWithoutWeight definition """
  36. def __init__(self):
  37. super(NetWithoutWeight, self).__init__()
  38. self.matmul = P.MatMul()
  39. def construct(self, x):
  40. x = self.matmul(x, x)
  41. return x
  42. def test_lamb_1():
  43. """ test_Lamb_1 """
  44. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  45. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  46. net = Net()
  47. net.set_train()
  48. loss = nn.SoftmaxCrossEntropyWithLogits()
  49. optimizer = Lamb(net.trainable_params(), decay_steps=10, warmup_steps=5)
  50. net_with_loss = WithLossCell(net, loss)
  51. train_network = TrainOneStepCell(net_with_loss, optimizer)
  52. _executor.compile(train_network, inputs, label)
  53. def test_lamb_2():
  54. """ test_Lamb_2 """
  55. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  56. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  57. net = Net()
  58. net.set_train()
  59. loss = nn.SoftmaxCrossEntropyWithLogits()
  60. optimizer = Lamb(net.trainable_params(), decay_steps=10, warmup_steps=0)
  61. net_with_loss = WithLossCell(net, loss)
  62. train_network = TrainOneStepCell(net_with_loss, optimizer)
  63. _executor.compile(train_network, inputs, label)