You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet_cifar_memreuse.py 6.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import mindspore.nn as nn
  16. from mindspore import Tensor
  17. from mindspore.ops import operations as P
  18. from mindspore.nn.optim.momentum import Momentum
  19. from mindspore.train.model import Model, ParallelMode
  20. from mindspore import context
  21. import mindspore.common.dtype as mstype
  22. import os
  23. import numpy as np
  24. import mindspore.ops.functional as F
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. import mindspore.dataset as de
  28. import mindspore.dataset.transforms.c_transforms as C
  29. import mindspore.dataset.transforms.vision.c_transforms as vision
  30. from mindspore.communication.management import init
  31. from resnet import resnet50
  32. import random
  33. random.seed(1)
  34. np.random.seed(1)
  35. de.config.set_seed(1)
  36. import argparse
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  41. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  42. parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
  43. parser.add_argument('--batch_size', type=int, default=4, help='Batch size.')
  44. parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
  45. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  46. parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
  47. args_opt = parser.parse_args()
  48. device_id=int(os.getenv('DEVICE_ID'))
  49. data_home=args_opt.dataset_path
  50. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  51. context.set_context(enable_task_sink=True, device_id=device_id)
  52. context.set_context(enable_loop_sink=True)
  53. context.set_context(enable_mem_reuse=True)
  54. def create_dataset(repeat_num=1, training=True):
  55. data_dir = data_home + "/cifar-10-batches-bin"
  56. if not training:
  57. data_dir = data_home + "/cifar-10-verify-bin"
  58. ds = de.Cifar10Dataset(data_dir)
  59. if args_opt.run_distribute:
  60. rank_id=int(os.getenv('RANK_ID'))
  61. rank_size=int(os.getenv('RANK_SIZE'))
  62. ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
  63. resize_height = 224
  64. resize_width = 224
  65. rescale = 1.0 / 255.0
  66. shift = 0.0
  67. # define map operations
  68. random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
  69. random_horizontal_op = vision.RandomHorizontalFlip()
  70. resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
  71. rescale_op = vision.Rescale(rescale, shift)
  72. normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
  73. changeswap_op = vision.HWC2CHW()
  74. type_cast_op = C.TypeCast(mstype.int32)
  75. c_trans = []
  76. if training:
  77. c_trans = [random_crop_op, random_horizontal_op]
  78. c_trans += [resize_op, rescale_op, normalize_op,
  79. changeswap_op]
  80. # apply map operations on images
  81. ds = ds.map(input_columns="label", operations=type_cast_op)
  82. ds = ds.map(input_columns="image", operations=c_trans)
  83. # apply repeat operations
  84. ds = ds.repeat(repeat_num)
  85. # apply shuffle operations
  86. ds = ds.shuffle(buffer_size=10)
  87. # apply batch operations
  88. ds = ds.batch(batch_size=args_opt.batch_size, drop_remainder=True)
  89. return ds
  90. class CrossEntropyLoss(nn.Cell):
  91. def __init__(self):
  92. super(CrossEntropyLoss, self).__init__()
  93. self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
  94. self.mean = P.ReduceMean()
  95. self.one_hot = P.OneHot()
  96. self.one = Tensor(1.0, mstype.float32)
  97. self.zero = Tensor(0.0, mstype.float32)
  98. def construct(self, logits, label):
  99. label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
  100. loss = self.cross_entropy(logits, label)[0]
  101. loss = self.mean(loss, (-1,))
  102. return loss
  103. if __name__ == '__main__':
  104. if args_opt.do_eval:
  105. context.set_context(enable_hccl=False)
  106. else:
  107. if args_opt.run_distribute:
  108. context.set_context(enable_hccl=True)
  109. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)
  110. context.set_auto_parallel_context(all_reduce_fusion_split_indices=[140])
  111. init()
  112. else:
  113. context.set_context(enable_hccl=False)
  114. context.set_context(mode=context.GRAPH_MODE)
  115. epoch_size = args_opt.epoch_size
  116. net = resnet50(args_opt.batch_size, args_opt.num_classes)
  117. loss = CrossEntropyLoss()
  118. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
  119. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  120. if args_opt.do_train:
  121. dataset = create_dataset(epoch_size)
  122. batch_num = dataset.get_dataset_size()
  123. config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
  124. ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
  125. loss_cb = LossMonitor()
  126. model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
  127. if args_opt.do_eval:
  128. # if args_opt.checkpoint_path:
  129. # param_dict = load_checkpoint(args_opt.checkpoint_path)
  130. # load_param_into_net(net, param_dict)
  131. eval_dataset = create_dataset(1, training=False)
  132. res = model.eval(eval_dataset)
  133. print("result: ", res)
  134. checker = os.path.exists("./memreuse.ir")
  135. assert (checker, True)