You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

onehot_model_parallel.py 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import pytest
  16. import numpy as np
  17. import mindspore as ms
  18. from mindspore.nn import Cell
  19. from mindspore.ops import operations as P
  20. from mindspore.common.tensor import Tensor
  21. import mindspore.context as context
  22. import mindspore.communication.management as distributedTool
  23. device_num = 2
  24. device_id = int(os.getenv('DEVICE_ID'))
  25. rank_id = 0
  26. def setup_module():
  27. global device_num
  28. global rank_id
  29. np.random.seed(0)
  30. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  31. context.set_context(enable_hccl=True)
  32. context.set_context(enable_task_sink=True,
  33. device_id=device_id)
  34. context.set_context(enable_ir_fusion=True)
  35. context.set_context(enable_loop_sink=False)
  36. distributedTool.init()
  37. device_num = distributedTool.get_group_size()
  38. rank_id = distributedTool.get_rank()
  39. context.set_auto_parallel_context(device_num=device_num,
  40. global_rank=rank_id)
  41. def teardown_module():
  42. distributedTool.release()
  43. class Onehot(Cell):
  44. def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None):
  45. super(Onehot, self).__init__()
  46. trans_stra = None
  47. if strategy:
  48. trans_stra = (strategy[0],)
  49. self.onehot = P.OneHot().set_strategy(strategy=strategy)
  50. self.depth = depth
  51. self.on_value = Tensor(on_value, ms.float32)
  52. self.off_value = Tensor(off_value, ms.float32)
  53. self.transpose = P.Transpose().set_strategy(strategy=trans_stra)
  54. self.sub = P.Sub().set_strategy(strategy=((1,1),(1,1)))
  55. def construct(self, input, indices):
  56. x = self.onehot(indices, self.depth, self.on_value, self.off_value)
  57. x = self.transpose(x, (1,0))
  58. x = self.sub(input, x)
  59. return x
  60. class DataGenerator():
  61. def get_parallel_blocks(self, input_, strategy):
  62. blocks = [input_]
  63. i = 0
  64. for stra in strategy:
  65. temp = []
  66. while len(blocks)>0:
  67. block = blocks.pop(0)
  68. temp.extend(np.split(block, stra, axis=i))
  69. blocks.extend(temp)
  70. i+=1
  71. return blocks
  72. def generate_data(self, shape):
  73. data = np.random.rand(*shape)
  74. return data
  75. def input_data(self, shape):
  76. data = (self.generate_data(shape)*2).astype(np.float32)
  77. stra = [1]*len(shape)
  78. stra[0] = device_num
  79. datas = self.get_parallel_blocks(data, stra)
  80. return Tensor(data), Tensor(datas[rank_id])
  81. def label_data(self, shape, classes):
  82. data = (self.generate_data(shape)*(classes-1)).astype(np.int32)
  83. stra = [1]*len(shape)
  84. stra[0] = device_num
  85. datas = self.get_parallel_blocks(data, stra)
  86. return Tensor(data),Tensor(datas[rank_id])
  87. class OneHotFactory:
  88. def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None):
  89. dataGen = DataGenerator()
  90. self.input_full, self.input_part = dataGen.input_data((classes, batch_size))
  91. self.label_full, self.label_part = dataGen.label_data((batch_size,),classes)
  92. self.depth = classes
  93. self.on_value = on_value
  94. self.off_value = off_value
  95. self.axis = axis
  96. self.strategy = strategy
  97. def forward_mindspore_single_impl(self):
  98. net = Onehot(axis=self.axis,
  99. depth=self.depth,
  100. on_value=self.on_value,
  101. off_value=self.off_value)
  102. out = net(self.input_full, self.label_full)
  103. return out
  104. def forward_mindspore_parallel_impl(self):
  105. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  106. net = Onehot(axis=self.axis,
  107. depth=self.depth,
  108. on_value=self.on_value,
  109. off_value=self.off_value, strategy=self.strategy)
  110. out = net.compile_and_run(self.input_full, self.label_full)
  111. return out
  112. def forward_cmp(self):
  113. out_mindspore_single = self.forward_mindspore_single_impl().asnumpy()
  114. context.reset_auto_parallel_context()
  115. out_mindspore_parallel = self.forward_mindspore_parallel_impl().asnumpy()
  116. context.reset_auto_parallel_context()
  117. assert np.allclose(out_mindspore_single, out_mindspore_parallel, 0.0001, 0.0001)
  118. def test_reid_onehot_forward_int32_128_depth1024_model_parallel():
  119. fact = OneHotFactory(batch_size=128,
  120. classes=1024,
  121. on_value=1.000000,
  122. off_value=0.000000,
  123. axis=-1,
  124. strategy=((1,device_num),(),()))
  125. fact.forward_cmp()
  126. def test_reid_onehot_forward_int32_1024_depth128_model_parallel():
  127. fact = OneHotFactory(batch_size=1024,
  128. classes=128,
  129. on_value=1.000000,
  130. off_value=0.000000,
  131. axis=-1,
  132. strategy=((1,device_num),(),()))
  133. fact.forward_cmp()