You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_apply_momentum.py 1.9 kB

5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import mindspore.context as context
  16. import mindspore.nn as nn
  17. from mindspore.common.initializer import initializer
  18. from mindspore.common.parameter import Parameter
  19. from mindspore.ops import operations as P
  20. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  21. class Net(nn.Cell):
  22. def __init__(self):
  23. super(Net, self).__init__()
  24. self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
  25. self.variable = Parameter(initializer(
  26. 'normal', [2, 3, 3, 4]), name='variable')
  27. self.accumulation = Parameter(initializer(
  28. 'normal', [2, 3, 3, 4]), name='accumulation')
  29. self.learning_rate = Parameter(initializer(
  30. 'normal', [1,]), name='learning_rate')
  31. self.gradient = Parameter(initializer(
  32. 'normal', [2, 3, 3, 4]), name='gradient')
  33. self.momentum = Parameter(initializer(
  34. 'normal', [1,]), name='momentum')
  35. def construct(self):
  36. return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
  37. def test_net():
  38. apply_momentum = Net()
  39. output = apply_momentum()
  40. print(output.asnumpy())