|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # ResNet-50 Example
-
- ## Description
-
- This is an example of training ResNet-50 with CIFAR-10 dataset in MindSpore.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset CIFAR-10
-
- > Unzip the CIFAR-10 dataset to any path you want and the folder structure should include train and eval dataset as follows:
- > ```
- > .
- > ├── cifar-10-batches-bin # train dataset
- > └── cifar-10-verify-bin # infer dataset
- > ```
-
-
- ## Example structure
-
- ```shell
- .
- ├── config.py # parameter configuration
- ├── dataset.py # data preprocessing
- ├── eval.py # infer script
- ├── lr_generator.py # generate learning rate for each step
- ├── run_distribute_train.sh # launch distributed training(8 pcs)
- ├── run_infer.sh # launch infering
- ├── run_standalone_train.sh # launch standalone training(1 pcs)
- └── train.py # train script
- ```
-
-
- ## Parameter configuration
-
- Parameters for both training and inference can be set in config.py.
-
- ```
- "class_num": 10, # dataset class num
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 1024, # loss scale
- "momentum": 0.9, # momentum
- "weight_decay": 1e-4, # weight decay
- "epoch_size": 90, # only valid for taining, which is always 1 for inference
- "buffer_size": 100, # number of queue size in data preprocessing
- "image_height": 224, # image height
- "image_width": 224, # image width
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_steps": 195, # the step interval between two checkpoints. By default, the last checkpoint will be saved after the last step
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint
- "warmup_epochs": 5, # number of warmup epoch
- "lr_decay_mode": "poly" # decay mode can be selected in steps, ploy and default
- "lr_init": 0.01, # initial learning rate
- "lr_end": 0.00001, # final learning rate
- "lr_max": 0.1, # maximum learning rate
- ```
-
- ## Running the example
-
- ### Train
-
- #### Usage
-
- ```
- # distributed training
- Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
-
- # standalone training
- Usage: sh run_standalone_train.sh [DATASET_PATH]
- ```
-
-
- #### Launch
-
- ```
- # distribute training example
- sh run_distribute_train.sh rank_table.json ~/cifar-10-batches-bin
-
- # standalone training example
- sh run_standalone_train.sh ~/cifar-10-batches-bin
- ```
-
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
- #### Result
-
- Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
-
- ```
- # distribute training result(8 pcs)
- epoch: 1 step: 195, loss is 1.9601055
- epoch: 2 step: 195, loss is 1.8555021
- epoch: 3 step: 195, loss is 1.6707983
- epoch: 4 step: 195, loss is 1.8162166
- epoch: 5 step: 195, loss is 1.393667
- ```
-
- ### Infer
-
- #### Usage
-
- ```
- # infer
- Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- #### Launch
-
- ```
- # infer example
- sh run_infer.sh ~/cifar10-10-verify-bin ~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt
- ```
-
- > checkpoint can be produced in training process.
-
- #### Result
-
- Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
-
- ```
- result: {'acc': 0.91446314102564111} ckpt=~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt
- ```
|