You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForFlatten(nn.Cell):
  66. def __init__(self):
  67. super(NetForFlatten, self).__init__()
  68. self.flatten = P.Flatten()
  69. def construct(self, x, y):
  70. return self.flatten(x) + y
  71. class NetForFlatten0D(nn.Cell):
  72. def __init__(self):
  73. super(NetForFlatten0D, self).__init__()
  74. self.flatten = P.Flatten()
  75. def construct(self, x):
  76. return self.flatten(x)
  77. class ArgmaxNet(nn.Cell):
  78. def __init__(self):
  79. super(ArgmaxNet, self).__init__()
  80. self.argmax = P.Argmax(axis=1)
  81. def construct(self, input):
  82. return self.argmax(input)
  83. class ArgminNet(nn.Cell):
  84. def __init__(self):
  85. super(ArgminNet, self).__init__()
  86. self.argmin = P.Argmin(axis=1)
  87. def construct(self, input):
  88. return self.argmin(input)
  89. class CumSumNet(nn.Cell):
  90. def __init__(self):
  91. super(CumSumNet, self).__init__()
  92. self.cumsum = P.CumSum()
  93. self.axis = 1
  94. def construct(self, input):
  95. return self.cumsum(input, self.axis)
  96. class SummaryNet(nn.Cell):
  97. def __init__(self,):
  98. super(SummaryNet, self).__init__()
  99. self.s = P.ScalarSummary()
  100. self.add = P.TensorAdd()
  101. def construct(self, x, y):
  102. self.s("x1", x)
  103. return self.add(x, y)
  104. test_case_math_ops = [
  105. ('Neg', {
  106. 'block': P.Neg(),
  107. 'desc_inputs': [[1, 3, 4, 4]],
  108. 'desc_bprop': [[1, 3, 4, 4]]}),
  109. ('Sub', {
  110. 'block': P.Sub(),
  111. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  112. 'desc_bprop': [[2, 3, 3, 5]]}),
  113. ('TensorAdd', {
  114. 'block': P.TensorAdd(),
  115. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  116. 'desc_bprop': [[2, 3, 3, 5]]}),
  117. ('Mul0', {
  118. 'block': P.Mul(),
  119. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  120. 'desc_bprop': [[2, 3, 3, 5]]}),
  121. ('Mul1', {
  122. 'block': P.Mul(),
  123. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  124. 'desc_bprop': [[2, 3, 3, 5]]}),
  125. ('Mul2', {
  126. 'block': P.Mul(),
  127. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  128. 'desc_bprop': [[2, 3, 3, 5]],
  129. 'skip': ['backward']}),
  130. ('Mul3', {
  131. 'block': P.Mul(),
  132. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  133. 'desc_bprop': [[2, 3, 3, 5]],
  134. 'skip': ['backward']}),
  135. ('Mul4', {
  136. 'block': P.Mul(),
  137. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  138. 'desc_bprop': [[2, 3, 3, 5]],
  139. 'skip': ['backward']}),
  140. ('Add0', {
  141. 'block': P.TensorAdd(),
  142. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  143. 'desc_bprop': [[2, 3, 3, 5]]}),
  144. ('Add1', {
  145. 'block': P.TensorAdd(),
  146. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  147. 'desc_bprop': [[2, 3, 3, 5]],
  148. 'skip': ['backward']}),
  149. ('Add2', {
  150. 'block': P.TensorAdd(),
  151. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  152. 'desc_bprop': [[2, 3, 3, 5]],
  153. 'skip': ['backward']}),
  154. ('Add3', {
  155. 'block': P.TensorAdd(),
  156. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  157. 'desc_bprop': [[2, 3, 3, 5]],
  158. 'skip': ['backward']}),
  159. ('Add4', {
  160. 'block': P.TensorAdd(),
  161. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  162. 'desc_bprop': [[2, 3, 3, 5]],
  163. 'skip': ['backward']}),
  164. ('Minimum', {
  165. 'block': P.Minimum(),
  166. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  167. 'desc_bprop': [[2, 3, 3, 5]]}),
  168. ('Pow', {
  169. 'block': P.Pow(),
  170. 'desc_const': [2.0],
  171. 'desc_inputs': [[2, 3, 3, 5]],
  172. 'desc_bprop': [[2, 3, 3, 5]]}),
  173. ('Exp', {
  174. 'block': P.Exp(),
  175. 'desc_inputs': [[2, 3]],
  176. 'desc_bprop': [[2, 3]]}),
  177. ('Floor', {
  178. 'block': P.Floor(),
  179. 'desc_inputs': [[2, 512, 56, 56]],
  180. 'desc_bprop': [[2, 512, 56, 56]],
  181. 'skip': ['backward']}),
  182. ('ACos', {
  183. 'block': P.ACos(),
  184. 'desc_inputs': [[2, 3]],
  185. 'desc_bprop': [[2, 3]]}),
  186. ('Acosh', {
  187. 'block': P.Acosh(),
  188. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  189. 'skip': ['backward']}),
  190. ('Sin', {
  191. 'block': P.Sin(),
  192. 'desc_inputs': [[2, 3]],
  193. 'desc_bprop': [[2, 3]]}),
  194. ('Reciprocal', {
  195. 'block': P.Reciprocal(),
  196. 'desc_inputs': [[2, 3, 3, 5]],
  197. 'desc_bprop': [[2, 3, 3, 5]]}),
  198. ('Minimum_0', {
  199. 'block': P.Minimum(),
  200. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  201. 'desc_bprop': [[2, 3, 3, 5]]}),
  202. ('Maximum', {
  203. 'block': P.Maximum(),
  204. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  205. 'desc_bprop': [[2, 3, 3, 5]]}),
  206. ('Maximum_0', {
  207. 'block': P.Maximum(),
  208. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  209. 'desc_bprop': [[2, 3, 3, 5]]}),
  210. ('MaximumGrad', {
  211. 'block': G.MaximumGrad(),
  212. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  213. 'skip': ['backward']}),
  214. ('MinimumGrad', {
  215. 'block': G.MinimumGrad(),
  216. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  217. 'skip': ['backward']}),
  218. ('StridedSlice', {
  219. 'block': P.StridedSlice(),
  220. 'desc_const': [(0, 1, 2, 1),
  221. (2, 3, 3, 4),
  222. (1, 1, 1, 1)],
  223. 'desc_inputs': [[2, 3, 3, 5]],
  224. 'desc_bprop': [[2, 2, 1, 3]]}),
  225. ('Slice_1', {
  226. 'block': P.Slice(),
  227. 'desc_const': [(0, 1, 2, 1),
  228. (1, 1, 1, 2)],
  229. 'desc_inputs': [[2, 3, 3, 5]],
  230. 'desc_bprop': [[1, 1, 1, 2]]}),
  231. ('StridedSliceGrad', {
  232. 'block': G.StridedSliceGrad(),
  233. 'desc_const': [(64, 1, 1024),
  234. (0, 1, 0),
  235. (64, 2, 1024),
  236. (1, 1, 1)],
  237. 'desc_inputs': [[64, 128, 1024]],
  238. 'skip': ['backward']}),
  239. ('RandomChoiceWithMask', {
  240. 'block': P.RandomChoiceWithMask(256),
  241. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  242. 'desc_bprop': [[256,4], [256,4]],
  243. 'skip': ['backward']}),
  244. ('LessEqual', {
  245. 'block': P.LessEqual(),
  246. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  247. Tensor(np.random.rand(4).astype(np.float16))],
  248. 'skip': ['backward']}),
  249. ('Less', {
  250. 'block': P.Less(),
  251. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  252. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  253. 'skip': ['backward']}),
  254. ('RealDiv_0', {
  255. 'block': P.RealDiv(),
  256. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  257. 'desc_inputs': [],
  258. 'skip': ['backward']}),
  259. ('RealDiv', {
  260. 'block': P.RealDiv(),
  261. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  262. 'desc_bprop': [[4]]}),
  263. ('RealDiv_1', {
  264. 'block': P.RealDiv(),
  265. 'desc_inputs': [[512, 1024], [512, 1024]],
  266. 'desc_bprop': [[512, 1024]]}),
  267. ('FloorDiv', {
  268. 'block': P.FloorDiv(),
  269. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  270. Tensor(np.random.rand(4).astype(np.float16))],
  271. 'skip': ['backward']}),
  272. ('FloorMod', {
  273. 'block': P.FloorMod(),
  274. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  275. Tensor(np.random.rand(4).astype(np.float16))],
  276. 'skip': ['backward']}),
  277. ('identity', {
  278. 'block': ops.functional.identity,
  279. 'desc_inputs': [[2, 2]],
  280. 'skip': ['backward']}),
  281. ('MatMul_1', {
  282. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  283. 'desc_inputs': [[1024, 160], [160, 1024]],
  284. 'desc_bprop': [[1024, 1024]]}),
  285. ('MatMul_2', {
  286. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  287. 'desc_inputs': [[160, 1024], [1024, 160]],
  288. 'desc_bprop': [[1024, 1024]]}),
  289. ('Sub', {
  290. 'block': P.Sub(),
  291. 'desc_inputs': [[3], [3]],
  292. 'desc_bprop': [[3]]}),
  293. ('TruncatedNormal', {
  294. 'block': P.TruncatedNormal(),
  295. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  296. 'desc_inputs': [],
  297. 'skip': ['backward'],
  298. 'add_fake_input': True}),
  299. ('Select', {
  300. 'block': P.Select(),
  301. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  302. [2, 3], [2, 3]],
  303. 'desc_bprop': [[2, 3]]}),
  304. ('Rank', {
  305. 'block': P.Rank(),
  306. 'desc_inputs': [[2, 3]],
  307. 'skip': ['backward']}),
  308. ('InvertPermutation', {
  309. 'block': P.InvertPermutation(),
  310. 'desc_const': [(0, 3, 1, 2)],
  311. 'desc_inputs': [],
  312. 'skip': ['backward']}),
  313. ('Square', {
  314. 'block': P.Square(),
  315. 'desc_inputs': [[4]],
  316. 'desc_bprop': [[4]]}),
  317. ('Rsqrt', {
  318. 'block': P.Rsqrt(),
  319. 'desc_inputs': [[4]],
  320. 'desc_bprop': [[4]]}),
  321. ('Sqrt', {
  322. 'block': P.Sqrt(),
  323. 'desc_inputs': [[4]],
  324. 'desc_bprop': [[4]]}),
  325. ('RealDiv', {
  326. 'block': P.RealDiv(),
  327. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  328. 'desc_bprop': [[2, 3, 4, 5]]}),
  329. ('Div', {
  330. 'block': P.Div(),
  331. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  332. 'desc_bprop': [[2, 3, 4, 5]]}),
  333. ('Equal', {
  334. 'block': P.Equal(),
  335. 'desc_inputs': [[3, 4, 5], [4, 5]],
  336. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  337. ('NotEqual', {
  338. 'block': P.NotEqual(),
  339. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  340. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  341. ('Greater', {
  342. 'block': P.Greater(),
  343. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  344. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  345. ('GreaterEqual', {
  346. 'block': P.GreaterEqual(),
  347. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  348. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  349. ('LogicalNot', {
  350. 'block': P.LogicalNot(),
  351. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  352. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  353. ('LogicalAnd', {
  354. 'block': P.LogicalAnd(),
  355. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  356. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  357. ('LogicalOr', {
  358. 'block': P.LogicalOr(),
  359. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  360. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  361. ('NpuAllocFloatStatus', {
  362. 'block': P.NPUAllocFloatStatus(),
  363. 'desc_inputs': [],
  364. 'add_fack_input': True,
  365. 'fack_input_type': np.float32,
  366. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  367. 'skip': ['backward']}),
  368. ('NpuGetFloatStatus', {
  369. 'block': P.NPUGetFloatStatus(),
  370. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  371. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  372. 'skip': ['backward']}),
  373. ('NpuClearFloatStatus', {
  374. 'block': P.NPUClearFloatStatus(),
  375. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  376. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  377. 'skip': ['backward']}),
  378. ('CheckValid', {
  379. 'block': P.CheckValid(),
  380. 'desc_inputs': [[20000, 4], [3]],
  381. 'desc_bprop': [[20000]],
  382. 'skip': ['backward']}),
  383. ('NMSWithMask', {
  384. 'block': P.NMSWithMask(0.5),
  385. 'desc_inputs': [[128, 5]],
  386. 'desc_bprop': [[128, 5], [128], [128]],
  387. 'skip': ['backward']}),
  388. ('Abs', {
  389. 'block': P.Abs(),
  390. 'desc_inputs': [[4]],
  391. 'desc_bprop': [[4]]}),
  392. ('CumSum', {
  393. 'block': P.CumSum(),
  394. 'desc_const': [0],
  395. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  396. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  397. ('ReduceSum_3', {
  398. 'block': P.ReduceSum(),
  399. 'desc_const': [0],
  400. 'desc_inputs': [[3, 2]],
  401. 'desc_bprop': [[2]]}),
  402. ('ReduceSum_4', {
  403. 'block': P.ReduceSum(keep_dims=True),
  404. 'desc_const': [0],
  405. 'desc_inputs': [[3, 2]],
  406. 'desc_bprop': [[1, 2]]}),
  407. ('ReduceSum_5', {
  408. 'block': P.ReduceSum(keep_dims=True),
  409. 'desc_inputs': [[2, 3, 4]],
  410. 'desc_bprop': [[1, 1, 1]]}),
  411. ('ReduceSum_6', {
  412. 'block': P.ReduceSum(),
  413. 'desc_inputs': [[2, 3, 4]],
  414. 'desc_bprop': [[1]]}),
  415. ('Sum_0', {
  416. 'block': P.ReduceSum(),
  417. 'desc_const': [(1,)],
  418. 'desc_inputs': [[3, 2]],
  419. 'desc_bprop': [[3]]}),
  420. ('Sum_1', {
  421. 'block': P.ReduceSum(keep_dims=True),
  422. 'desc_const': [(1,)],
  423. 'desc_inputs': [[3, 2]],
  424. 'desc_bprop': [[3, 1]]}),
  425. ('Sum_2', {
  426. 'block': P.ReduceSum(),
  427. 'desc_const': [(0, 1)],
  428. 'desc_inputs': [[3, 2]],
  429. 'desc_bprop': [[1]]}),
  430. ('Sum_3', {
  431. 'block': P.ReduceSum(),
  432. 'desc_const': [0],
  433. 'desc_inputs': [[3, 2]],
  434. 'desc_bprop': [[2]]}),
  435. ('Sum_4', {
  436. 'block': P.ReduceSum(keep_dims=True),
  437. 'desc_const': [0],
  438. 'desc_inputs': [[3, 2]],
  439. 'desc_bprop': [[1, 2]]}),
  440. ('Sum_5', {
  441. 'block': P.ReduceSum(keep_dims=True),
  442. 'desc_const': [()],
  443. 'desc_inputs': [[2, 3, 4]],
  444. 'desc_bprop': [[1, 1, 1]]}),
  445. ('Sum_6', {
  446. 'block': P.ReduceSum(),
  447. 'desc_const': [()],
  448. 'desc_inputs': [[2, 3, 4]],
  449. 'desc_bprop': [[1]]}),
  450. ('Sign', {
  451. 'block': P.Sign(),
  452. 'desc_inputs': [[3]],
  453. 'desc_bprop': [[3]]}),
  454. ('Round', {
  455. 'block': P.Round(),
  456. 'desc_inputs': [[3]],
  457. 'desc_bprop': [[3]]}),
  458. ('Atan2', {
  459. 'block': P.Atan2(),
  460. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  461. Tensor(np.array([1, 1]).astype(np.float32))],
  462. 'desc_bprop': [[2]]})
  463. ]
  464. test_case_nn_ops = [
  465. ('BiasAdd', {
  466. 'block': P.BiasAdd(),
  467. 'desc_inputs': [[1, 3, 3, 3], [3]],
  468. 'desc_bprop': [[1, 3, 3, 3]]}),
  469. ('BiasAddGrad', {
  470. 'block': G.BiasAddGrad(),
  471. 'desc_inputs': [[1, 3, 3, 3]],
  472. 'skip': ['backward']}),
  473. ('Gelu', {
  474. 'block': P.Gelu(),
  475. 'desc_inputs': [[1, 3, 4, 4]],
  476. 'desc_bprop': [[1, 3, 4, 4]]}),
  477. ('GeluGrad', {
  478. 'block': G.GeluGrad(),
  479. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  480. 'desc_bprop': [[2, 2]],
  481. 'skip': ['backward']}),
  482. ('Tanh', {
  483. 'block': P.Tanh(),
  484. 'desc_inputs': [[1, 3, 4, 4]],
  485. 'desc_bprop': [[1, 3, 4, 4]]}),
  486. ('TanhGrad', {
  487. 'block': G.TanhGrad(),
  488. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  489. 'desc_bprop': [[1, 3, 4, 4]],
  490. 'skip': ['backward']}),
  491. ('ReLU', {
  492. 'block': P.ReLU(),
  493. 'desc_inputs': [[1, 3, 4, 4]],
  494. 'desc_bprop': [[1, 3, 4, 4]]}),
  495. ('ReLU6', {
  496. 'block': P.ReLU6(),
  497. 'desc_inputs': [[1, 3, 4, 4]],
  498. 'desc_bprop': [[1, 3, 4, 4]]}),
  499. ('ReLUGrad', {
  500. 'block': G.ReluGrad(),
  501. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  502. 'skip': ['backward']}),
  503. ('Elu', {
  504. 'block': P.Elu(),
  505. 'desc_inputs': [[2, 3, 4]],
  506. 'desc_bprop': [[2, 3, 4]]}),
  507. ('EluGrad', {
  508. 'block': G.EluGrad(),
  509. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  510. 'desc_bprop': [[2, 3, 4]],
  511. 'skip': ['backward']}),
  512. ('Sigmoid', {
  513. 'block': P.Sigmoid(),
  514. 'desc_inputs': [[1, 3, 4, 4]],
  515. 'desc_bprop': [[1, 3, 4, 4]]}),
  516. ('MaxPool', {
  517. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  518. 'desc_inputs': [[100, 3, 28, 28]],
  519. 'desc_bprop': [[100, 3, 14, 14]]}),
  520. ('MaxPoolGrad', {
  521. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  522. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  523. 'desc_bprop': [[3, 4, 6, 6]],
  524. 'skip': ['backward']}),
  525. ('AvgPool', {
  526. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  527. 'desc_inputs': [[100, 3, 28, 28]],
  528. 'desc_bprop': [[100, 3, 14, 14]]}),
  529. ('AvgPoolGrad', {
  530. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  531. 'desc_const': [(3, 4, 6, 6)],
  532. 'const_first': True,
  533. 'desc_inputs': [[3, 4, 6, 6]],
  534. 'desc_bprop': [[3, 4, 6, 6]],
  535. 'skip': ['backward']}),
  536. ('MaxPoolWithArgmax', {
  537. 'block': P.MaxPoolWithArgmax(window=2, stride=2),
  538. 'desc_inputs': [[128, 32, 32, 64]],
  539. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  540. ('SoftmaxCrossEntropyWithLogits', {
  541. 'block': P.SoftmaxCrossEntropyWithLogits(),
  542. 'desc_inputs': [[1, 10], [1, 10]],
  543. 'desc_bprop': [[1], [1, 10]],
  544. 'skip': ['backward_exec']}),
  545. ('Flatten', {
  546. 'block': P.Flatten(),
  547. 'desc_inputs': [[128, 32, 32, 64]],
  548. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  549. ('LogSoftmax', {
  550. 'block': P.LogSoftmax(),
  551. 'desc_inputs': [[64, 2]],
  552. 'desc_bprop': [[160, 30522]]}),
  553. ('LogSoftmaxGrad', {
  554. 'block': G.LogSoftmaxGrad(),
  555. 'desc_inputs': [[16, 1234], [16, 1234]],
  556. 'desc_bprop': [[64, 2]],
  557. 'skip': ['backward']}),
  558. ('LayerNorm', {
  559. 'block': P.LayerNorm(),
  560. 'desc_inputs': [[2, 16], [16], [16]],
  561. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  562. ('LayerNormGrad', {
  563. 'block': G.LayerNormGrad(),
  564. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  565. 'desc_bprop': [[2, 16], [16], [16]],
  566. 'skip': ['backward']}),
  567. ('FusedBatchNorm', {
  568. 'block': P.FusedBatchNorm(),
  569. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  570. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  571. 'skip': []}),
  572. ('FusedBatchNormGrad', {
  573. 'block': G.FusedBatchNormGrad(),
  574. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  575. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  576. 'skip': ['backward']}),
  577. ('BatchNorm', {
  578. 'block': P.BatchNorm(),
  579. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  580. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  581. 'skip': []}),
  582. ('BatchNormGrad', {
  583. 'block': G.BatchNormGrad(),
  584. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  585. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  586. 'skip': ['backward']}),
  587. ('ApplyMomentum', {
  588. 'block': P.ApplyMomentum(),
  589. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  590. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  591. 'desc_bprop': [[128, 32, 32, 64]],
  592. 'skip': ['backward']}),
  593. ('TopK', {
  594. 'block': P.TopK(),
  595. 'desc_const': [5],
  596. 'desc_inputs': [[20, 20, 10]],
  597. 'desc_bprop': [[20, 20, 5]],
  598. 'skip': ['backward']}),
  599. ('GatherV2_0', {
  600. 'block': P.GatherV2(),
  601. 'desc_const': [0],
  602. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  603. 'desc_bprop': [[2, 1, 2]]}),
  604. ('GatherV2_1', {
  605. 'block': P.GatherV2(),
  606. 'desc_const': [2],
  607. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  608. 'desc_bprop': [[3, 1, 2]]}),
  609. ('GatherV2_2', {
  610. 'block': P.GatherV2(),
  611. 'desc_const': [0],
  612. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  613. 'desc_bprop': [[3, 2, 1, 3]]}),
  614. ('GatherV2_3', {
  615. 'block': P.GatherV2(),
  616. 'desc_const': [2],
  617. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  618. 'desc_bprop': [[3, 1, 3, 2]]}),
  619. ('GatherV2_4', {
  620. 'block': P.GatherV2(),
  621. 'desc_const': [1],
  622. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  623. 'desc_bprop': [[32, 1, 1024]]}),
  624. ('GatherV2_5', {
  625. 'block': P.GatherV2(),
  626. 'desc_const': [-1],
  627. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  628. 'desc_bprop': [[3, 1, 2]]}),
  629. ('GatherV2_6', {
  630. 'block': P.GatherV2(),
  631. 'desc_const': [0],
  632. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  633. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  634. ('UnsortedSegmentSum', {
  635. 'block': P.UnsortedSegmentSum(),
  636. 'desc_const': [1280],
  637. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  638. 'desc_bprop': [[8192,1024]],
  639. 'skip': ['backward']}),
  640. ('UnsortedSegmentSum_1', {
  641. 'block': P.UnsortedSegmentSum(),
  642. 'desc_const': [4],
  643. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  644. 'desc_bprop': [[4, 1, 3]],
  645. 'skip': ['backward']}),
  646. ('DropoutGenMask', {
  647. 'block': P.DropoutGenMask(),
  648. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  649. 'desc_inputs': [],
  650. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  651. 'skip': ['backward']}),
  652. ('DropoutDoMask', {
  653. 'block': P.DropoutDoMask(),
  654. 'desc_const': [Tensor(0.5)],
  655. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  656. 'desc_bprop': [[64, 12, 128, 128]]}),
  657. ('Dropout', {
  658. 'block': nn.Dropout(0.5),
  659. 'desc_inputs': [[64, 12, 128, 128]],
  660. 'desc_bprop': [[64, 12, 128, 128]]}),
  661. ('ReduceMean0', {
  662. 'block': P.ReduceMean(),
  663. 'desc_const': [(2,)],
  664. 'desc_inputs': [[3, 2, 2]],
  665. 'desc_bprop': [[3, 2]]}),
  666. ('ReduceMean1', {
  667. 'block': P.ReduceMean(),
  668. 'desc_const': [2],
  669. 'desc_inputs': [[3, 2, 2]],
  670. 'desc_bprop': [[3, 2]]}),
  671. ('All', {
  672. 'block': P.ReduceAll(),
  673. 'desc_const': [(1,)],
  674. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  675. 'desc_bprop': [[3]],
  676. 'skip': ['backward']}),
  677. ('DescConst', {
  678. 'block': Tensor(np.array([2], np.float32)),
  679. 'desc_inputs': [],
  680. 'desc_bprop': [[1]],
  681. 'skip': ['backward'],
  682. 'add_fake_input': True}),
  683. ('Fill', {
  684. 'block': P.Fill(),
  685. 'desc_const': [mstype.float32, (2, 3), 1.0],
  686. 'desc_inputs': [],
  687. 'desc_bprop': [[2, 3]],
  688. 'skip': ['backward'],
  689. 'add_fake_input': True}),
  690. ('OnesLike', {
  691. 'block': P.OnesLike(),
  692. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  693. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  694. }),
  695. ('ZerosLike', {
  696. 'block': P.ZerosLike(),
  697. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  698. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  699. }),
  700. ('Softmax', {
  701. 'block': P.Softmax(),
  702. 'desc_inputs': [[5, 5]],
  703. 'desc_bprop': [[5, 5]]}),
  704. ('DepthwiseConv2dNative_1', {
  705. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  706. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  707. 'desc_bprop': [[10, 30, 16, 16]]}),
  708. ('DepthwiseConv2dNative_2', {
  709. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  710. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  711. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  712. ('SigmoidCrossEntropyWithLogits', {
  713. 'block': P.SigmoidCrossEntropyWithLogits(),
  714. 'desc_inputs': [[128, 10], [128, 10]],
  715. 'desc_bprop': [[128, 10]]}),
  716. ('Pad', {
  717. 'block': P.Pad(((1, 2), (2, 3))),
  718. 'desc_inputs': [[7, 7]],
  719. 'desc_bprop': [[10, 12]]}),
  720. ('BinaryCrossEntropy', {
  721. 'block': P.BinaryCrossEntropy(),
  722. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  723. 'desc_bprop': []}),
  724. ('SparseApplyAdagrad', {
  725. 'block': P.SparseApplyAdagrad(0.5),
  726. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  727. 'desc_bprop': [3, 3],
  728. 'skip': ['backward']}),
  729. ('Flatten_1', {
  730. 'block': NetForFlatten(),
  731. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  732. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  733. 'skip': ['backward']}),
  734. ('Flatten_2', {
  735. 'block': NetForFlatten(),
  736. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  737. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  738. 'skip': ['backward']}),
  739. ('ArgmaxNet', {
  740. 'block': ArgmaxNet(),
  741. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  742. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  743. 'skip': ['backward']}),
  744. ('ArgminNet', {
  745. 'block': ArgminNet(),
  746. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  747. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  748. 'skip': ['backward']}),
  749. ('CumSumNet', {
  750. 'block': CumSumNet(),
  751. 'desc_const': [0],
  752. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  753. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  754. ('OneHot', {
  755. 'block': P.OneHot(),
  756. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  757. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  758. 'desc_bprop': [[64, 2]]}),
  759. ('ReduceProd_0', {
  760. 'block': P.ReduceProd(),
  761. 'desc_const': [0],
  762. 'desc_inputs': [[3, 2]],
  763. 'desc_bprop': [[2]]}),
  764. ('ReduceProd_1', {
  765. 'block': P.ReduceProd(keep_dims=True),
  766. 'desc_const': [0],
  767. 'desc_inputs': [[3, 2]],
  768. 'desc_bprop': [[1, 2]]}),
  769. ('CumProd', {
  770. 'block': P.CumProd(),
  771. 'desc_const': [0],
  772. 'desc_inputs': [[3, 2]],
  773. 'desc_bprop': [[3, 2]]}),
  774. ('ApplyFtrl', {
  775. 'block': P.ApplyFtrl(),
  776. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  777. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  778. 'desc_bprop': [3, 3],
  779. 'skip': ['backward']}),
  780. ('ApplyRMSProp', {
  781. 'block': P.ApplyRMSProp(),
  782. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  783. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  784. 'desc_bprop': [3, 3],
  785. 'skip': ['backward']}),
  786. ('ApplyCenteredRMSProp', {
  787. 'block': P.ApplyCenteredRMSProp(),
  788. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  789. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  790. 'desc_bprop': [3, 3],
  791. 'skip': ['backward']}),
  792. ]
  793. test_case_array_ops = [
  794. ('SpaceToDepth', {
  795. 'block': P.SpaceToDepth(2),
  796. 'desc_inputs': [[1, 3, 2, 2]],
  797. 'desc_bprop': [[1, 12, 1, 1]]}),
  798. ('DepthToSpace', {
  799. 'block': P.DepthToSpace(2),
  800. 'desc_inputs': [[1, 12, 1, 1]],
  801. 'desc_bprop': [[1, 3, 2, 2]]}),
  802. ('Split', {
  803. 'block': P.Split(1, 2),
  804. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  805. 'skip': ['backward']}),
  806. ('Argmax', {
  807. 'block': P.Argmax(),
  808. 'desc_inputs': [[128, 32, 32, 64]],
  809. 'desc_bprop': [0],
  810. 'skip': ['backward']}),
  811. ('Argmin', {
  812. 'block': P.Argmin(),
  813. 'desc_inputs': [[128, 32, 32, 64]],
  814. 'desc_bprop': [1],
  815. 'skip': ['backward']}),
  816. ('ArgMaxWithValue', {
  817. 'block': P.ArgMaxWithValue(),
  818. 'desc_inputs': [[128, 32, 32, 64]],
  819. 'desc_bprop': [[1], [1]],
  820. 'skip': ['backward']}),
  821. ('ArgMinWithValue', {
  822. 'block': P.ArgMinWithValue(),
  823. 'desc_inputs': [[128, 32, 32, 64]],
  824. 'desc_bprop': [[1], [1]],
  825. 'skip': ['backward']}),
  826. ('Transpose_dim3', {
  827. 'block': P.Transpose(),
  828. 'desc_const': [(0, 2, 1)],
  829. 'desc_inputs': [[1, 2, 3]],
  830. 'desc_bprop': [[1, 3, 2]]}),
  831. ('Transpose_dim4', {
  832. 'block': P.Transpose(),
  833. 'desc_const': [(0, 1, 2, 3)],
  834. 'desc_inputs': [[1, 2, 3, 4]],
  835. 'desc_bprop': [[1, 2, 4, 3]]}),
  836. ('AddN', {
  837. 'block': NetForTupleInput(P.AddN()),
  838. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  839. 'desc_bprop': [[2, 3, 3, 5]],
  840. 'skip': ['backward']}),
  841. ('Shape', {
  842. 'block': P.Shape(),
  843. 'desc_inputs': [[3, 3, 2, 2]],
  844. 'skip': ['backward']}),
  845. ('Reshape', {
  846. 'block': P.Reshape(),
  847. 'desc_const': [(64,)],
  848. 'desc_inputs': [[64, 1]],
  849. 'desc_bprop': [[64]]}),
  850. ('Cast', {
  851. 'block': P.Cast(),
  852. 'desc_const': [mstype.int32],
  853. 'desc_inputs': [[2, 3, 4, 5]],
  854. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  855. ('ExpandDims', {
  856. 'block': P.ExpandDims(),
  857. 'desc_const': [0],
  858. 'desc_inputs': [[2, 2]],
  859. 'desc_bprop': [[1, 2, 2]]}),
  860. ('ExpandDims_1', {
  861. 'block': P.ExpandDims(),
  862. 'desc_const': [-1],
  863. 'desc_inputs': [[2, 2]],
  864. 'desc_bprop': [[2, 2, 1]]}),
  865. ('Squeeze', {
  866. 'block': P.Squeeze(2),
  867. 'desc_inputs': [[3, 2, 1]],
  868. 'desc_bprop': [[3, 2]]}),
  869. ('Squeeze_0', {
  870. 'block': P.Squeeze(),
  871. 'desc_inputs': [[3, 1, 2, 1]],
  872. 'desc_bprop': [[3, 2]]}),
  873. ('Squeeze_1', {
  874. 'block': P.Squeeze(),
  875. 'desc_inputs': [[1, 1, 1, 1]],
  876. 'desc_bprop': [1.0],
  877. 'skip': ['backward']}),
  878. ('Squeeze_2', {
  879. 'block': P.Squeeze((2, 3)),
  880. 'desc_inputs': [[3, 2, 1, 1]],
  881. 'desc_bprop': [[3, 2]]}),
  882. ('Size', {
  883. 'block': P.Size(),
  884. 'desc_inputs': [[2, 3, 5]],
  885. 'skip': ['backward']}),
  886. ('Tile_0', {
  887. 'block': P.Tile(),
  888. 'desc_const': [(1, 2)],
  889. 'desc_inputs': [[64, 1]],
  890. 'desc_bprop': [[64, 2]]}),
  891. ('Tile_1', {
  892. 'block': P.Tile(),
  893. 'desc_const': [(1, 1)],
  894. 'desc_inputs': [[64, 1]],
  895. 'desc_bprop': [[64, 1]]}),
  896. ('Tile_2', {
  897. 'block': P.Tile(),
  898. 'desc_const': [(2, 1, 1, 2)],
  899. 'desc_inputs': [[2, 2, 2]],
  900. 'desc_bprop': [[2, 2, 2, 4]]}),
  901. ('ConcatV2_0', {
  902. 'block': P.Concat(),
  903. 'desc_inputs': [
  904. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  905. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  906. 'desc_bprop': [[4, 2]]}),
  907. ('ConcatV2_1', {
  908. 'block': P.Concat(axis=2),
  909. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  910. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  911. 'desc_bprop': [[2, 1, 5]]}),
  912. ('ConcatV2_2', {
  913. 'block': NetForConcat(),
  914. 'desc_inputs': [[2, 2]],
  915. 'desc_bprop': [[4, 2]]}),
  916. ('ConcatV2_3', {
  917. 'block': NetForConcat1(),
  918. 'desc_inputs': [[2, 2], [2, 2]],
  919. 'desc_bprop': [[4, 2]]}),
  920. ('ConcatV2_4', {
  921. 'block': P.Concat(axis=0),
  922. 'desc_inputs': [
  923. (Tensor(np.ones((3, 2, 3), np.float32)),
  924. Tensor(np.ones((5, 2, 3), np.float32)),
  925. Tensor(np.ones((6, 2, 3), np.float32)))],
  926. 'desc_bprop': [[14, 2, 3]]}),
  927. ('ConcatV2_5', {
  928. 'block': P.Concat(axis=-1),
  929. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  930. Tensor(np.array([1], np.float32)),
  931. Tensor(np.array([1], np.float32)))],
  932. 'desc_bprop': [[3,]]}),
  933. ('Diag', {
  934. 'block': P.Diag(),
  935. 'desc_inputs': [[4]],
  936. 'desc_bprop': [[4, 4]],
  937. }),
  938. ('DiagPart', {
  939. 'block': P.DiagPart(),
  940. 'desc_inputs': [[4, 4]],
  941. 'desc_bprop': [[4]],
  942. }),
  943. ('SpaceToBatch_1', {
  944. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  945. 'desc_inputs': [[1, 3, 2, 2]],
  946. 'desc_bprop': [[4, 3, 1, 1]],
  947. }),
  948. ('SpaceToBatch_2', {
  949. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  950. 'desc_inputs': [[1, 3, 2, 2]],
  951. 'desc_bprop': [[4, 3, 2, 4]],
  952. }),
  953. ('BatchToSpace_1', {
  954. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  955. 'desc_inputs': [[4, 3, 1, 1]],
  956. 'desc_bprop': [[1, 3, 2, 2]],
  957. }),
  958. ('BatchToSpace_2', {
  959. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  960. 'desc_inputs': [[4, 3, 1, 1]],
  961. 'desc_bprop': [[1, 3, 2, 1]],
  962. }),
  963. ]
  964. test_case_other_ops = [
  965. ('ScalarLog', {
  966. 'block': F.scalar_log,
  967. 'desc_const': [0.0],
  968. 'desc_inputs': [],
  969. 'desc_bprop': [1],
  970. 'skip': ['backward']}),
  971. ('BoundingBoxEncode', {
  972. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  973. 'desc_inputs': [[256, 4], [256, 4]],
  974. 'desc_bprop': [[256, 4]],
  975. 'skip': ['backward']}),
  976. ('BoundingBoxDecode', {
  977. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  978. 'desc_inputs': [[256, 4], [256, 4]],
  979. 'desc_bprop': [[256, 4]],
  980. 'skip': ['backward']}),
  981. ('GatherNd', {
  982. 'block': P.GatherNd(),
  983. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  984. Tensor(np.ones((2, 4), np.int32))),
  985. 'desc_bprop': [[2]]}),
  986. ('ScatterNdUpdate', {
  987. 'block': P.ScatterNdUpdate(),
  988. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  989. Tensor(np.ones((2, 2), np.int32)),
  990. Tensor(np.ones((2,), np.float32))),
  991. 'desc_bprop': [[2, 3]]}),
  992. ('ScatterNd', {
  993. 'block': P.ScatterNd(),
  994. 'desc_const': [(3, 3)],
  995. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  996. Tensor(np.ones((2,), np.int32))),
  997. 'desc_bprop': [[3, 3]]}),
  998. ('SmoothL1Loss', {
  999. 'block': P.SmoothL1Loss(),
  1000. 'desc_inputs': [[256, 4], [256, 4]],
  1001. 'desc_bprop': [[256, 4]]}),
  1002. ('IOU', {
  1003. 'block': P.IOU(),
  1004. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1005. 'desc_bprop': [[128, 256]]}),
  1006. ('Summary', {
  1007. 'block': SummaryNet(),
  1008. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1009. Tensor(np.array([1.2]).astype(np.float32))],
  1010. 'skip': ['backward']}),
  1011. ]
  1012. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1013. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1014. # use -k to select certain testcast
  1015. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1016. test_exec_case = test_case
  1017. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1018. 'backward' not in x[1]['skip'], test_case)
  1019. import mindspore.context as context
  1020. @non_graph_engine
  1021. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1022. def test_exec():
  1023. context.set_context(mode=context.GRAPH_MODE)
  1024. return test_exec_case
  1025. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1026. def test_backward_exec():
  1027. context.set_context(mode=context.GRAPH_MODE)
  1028. return test_backward_exec_case
  1029. raise_set = [
  1030. ('Cast_Error', {
  1031. 'block': (P.Cast(), {'exception': TypeError}),
  1032. 'desc_const': [mstype.int32],
  1033. 'desc_inputs': ['wrong input'],
  1034. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1035. ('Maximum_Error', {
  1036. 'block': (P.Maximum(), {'exception': TypeError}),
  1037. 'desc_const': [(1, 2, 3)],
  1038. 'desc_inputs': [[2, 3, 3, 5]],
  1039. 'desc_bprop': [[2, 3, 3, 5]]}),
  1040. ('Shape_error', {
  1041. 'block': (P.Shape(), {'exception': TypeError}),
  1042. 'desc_inputs': [(64, 1)],
  1043. 'desc_bprop': [[64]]}),
  1044. ('Flatten_Error', {
  1045. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1046. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1047. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1048. ]
  1049. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1050. def test_check_exception():
  1051. return raise_set