You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equal_op.py 2.2 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. from mindspore.ops import operations as P
  17. from mindspore.nn import Cell
  18. from mindspore.common.tensor import Tensor
  19. import mindspore.context as context
  20. import numpy as np
  21. class NetEqual(Cell):
  22. def __init__(self):
  23. super(NetEqual, self).__init__()
  24. self.Equal = P.Equal()
  25. def construct(self, x, y):
  26. return self.Equal(x, y)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_equal():
  31. x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
  32. x0 = Tensor(x0_np)
  33. y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
  34. y0 = Tensor(y0_np)
  35. expect0 = np.equal(x0_np, y0_np)
  36. x1_np = np.array([0, 1, 3]).astype(np.float32)
  37. x1 = Tensor(x1_np)
  38. y1_np = np.array([0, 1, -3]).astype(np.float32)
  39. y1 = Tensor(y1_np)
  40. expect1 = np.equal(x1_np, y1_np)
  41. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  42. equal = NetEqual()
  43. output0 = equal(x0, y0)
  44. assert np.all(output0.asnumpy() == expect0)
  45. assert (output0.shape() == expect0.shape)
  46. output1 = equal(x1, y1)
  47. assert np.all(output1.asnumpy() == expect1)
  48. assert (output1.shape() == expect1.shape)
  49. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  50. equal = NetEqual()
  51. output0 = equal(x0, y0)
  52. assert np.all(output0.asnumpy() == expect0)
  53. assert (output0.shape() == expect0.shape)
  54. output1 = equal(x1, y1)
  55. assert np.all(output1.asnumpy() == expect1)
  56. assert (output1.shape() == expect1.shape)