You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_l2normalize.py 2.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import context
  16. import mindspore.nn as nn
  17. from mindspore.ops import operations as P
  18. from mindspore import Tensor
  19. from tests.ut.python.ops.test_math_ops import VirtualLoss
  20. import mindspore as ms
  21. from mindspore.common.api import _executor
  22. from mindspore.ops import composite as C
  23. class NetWithLoss(nn.Cell):
  24. def __init__(self, network):
  25. super(NetWithLoss, self).__init__()
  26. self.loss = VirtualLoss()
  27. self.network = network
  28. def construct(self, x, y, b):
  29. predict = self.network(x, y, b)
  30. return self.loss(predict)
  31. class GradWrap(nn.Cell):
  32. def __init__(self, network):
  33. super(GradWrap, self).__init__()
  34. self.network = network
  35. def construct(self, x, y, b):
  36. return C.grad_all(self.network)(x, y, b)
  37. # model_parallel test
  38. def test_l2normalize_matmul():
  39. class Net(nn.Cell):
  40. def __init__(self, strategy1, strategy2, strategy3):
  41. super().__init__()
  42. self.norm1 = P.L2Normalize(axis=0).set_strategy(strategy1)
  43. self.norm2 = P.L2Normalize(axis=0).set_strategy(strategy1)
  44. self.mul1 = P.Mul().set_strategy(strategy2)
  45. self.mul2 = P.Mul().set_strategy(strategy3)
  46. def construct(self, x, y, b):
  47. y = self.norm1(y)
  48. x = self.norm2(x)
  49. out = self.mul1(x, y)
  50. out = self.mul2(out, b)
  51. return out
  52. context.set_auto_parallel_context(device_num=8, global_rank=0)
  53. strategy1 = ((1, 1, 4), )
  54. strategy2 = ((1, 1, 4), (1, 1, 4))
  55. strategy3 = ((1, 1, 8), (1, 1, 8))
  56. net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
  57. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  58. x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
  59. y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
  60. b = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
  61. _executor.compile(net, x, y, b)