You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_eval.py 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """test eval"""
  16. import numpy as np
  17. import mindspore as ms
  18. import mindspore.nn as nn
  19. from mindspore.common.api import _executor
  20. from mindspore import Tensor
  21. from mindspore import context
  22. from ..ut_filter import non_graph_engine
  23. class Net(nn.Cell):
  24. """Net definition"""
  25. def __init__(self,
  26. cin,
  27. cout,
  28. kernel_size,
  29. stride=1,
  30. pad_mode='pad',
  31. padding=0,
  32. dilation=1,
  33. group=1,
  34. has_bias=False,
  35. weight_init='normal',
  36. bias_init='zeros'):
  37. super(Net, self).__init__()
  38. Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
  39. self.conv = nn.Conv2d(cin,
  40. cout,
  41. kernel_size,
  42. stride,
  43. pad_mode,
  44. padding,
  45. dilation,
  46. group,
  47. has_bias,
  48. weight_init,
  49. bias_init)
  50. def construct(self, input_x):
  51. return self.conv(input_x)
  52. @non_graph_engine
  53. def test_compile_train_eval():
  54. """test_compile_train_eval"""
  55. net = Net(3, 1, (3, 3), bias_init='zeros')
  56. train_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  57. context.set_context(mode=context.GRAPH_MODE)
  58. ms_executor = _executor
  59. ms_executor.init_dataset("train", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), 'dataset')
  60. ms_executor.compile(net, train_input_data, phase='train')
  61. ms_executor(net, train_input_data, phase='train')
  62. ms_executor.init_dataset("eval", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), phase='eval_dataset')
  63. valid_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  64. ms_executor.compile(net, valid_input_data, phase='eval')
  65. ms_executor(net, valid_input_data, phase='eval')