|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- from util import save_and_check
-
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
- SCHEMA_DIR = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
- COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
- "col_sint16", "col_sint32", "col_sint64"]
- GENERATE_GOLDEN = False
-
-
- def skip_test_case_0():
- """
- Test Repeat then Shuffle
- """
- logger.info("Test Repeat then Shuffle")
- # define parameters
- repeat_count = 2
- buffer_size = 5
- seed = 0
- parameters = {"params": {'repeat_count': repeat_count,
- 'buffer_size': buffer_size,
- 'seed': seed}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
-
- filename = "test_case_0_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def skip_test_case_0_reverse():
- """
- Test Shuffle then Repeat
- """
- logger.info("Test Shuffle then Repeat")
- # define parameters
- repeat_count = 2
- buffer_size = 5
- seed = 0
- parameters = {"params": {'repeat_count': repeat_count,
- 'buffer_size': buffer_size,
- 'reshuffle_each_iteration': False,
- 'seed': seed}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
- data1 = data1.repeat(repeat_count)
-
- filename = "test_case_0_reverse_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_case_1():
- """
- Test Repeat then Batch
- """
- logger.info("Test Repeat then Batch")
- # define parameters
- repeat_count = 2
- batch_size = 5
- parameters = {"params": {'repeat_count': repeat_count,
- 'batch_size': batch_size}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
- data1 = data1.batch(batch_size, drop_remainder=True)
-
- filename = "test_case_1_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_case_1_reverse():
- """
- Test Batch then Repeat
- """
- logger.info("Test Batch then Repeat")
- # define parameters
- repeat_count = 2
- batch_size = 5
- parameters = {"params": {'repeat_count': repeat_count,
- 'batch_size': batch_size}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.batch(batch_size, drop_remainder=True)
- data1 = data1.repeat(repeat_count)
-
- filename = "test_case_1_reverse_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_case_2():
- """
- Test Batch then Shuffle
- """
- logger.info("Test Batch then Shuffle")
- # define parameters
- buffer_size = 5
- seed = 0
- batch_size = 2
- parameters = {"params": {'buffer_size': buffer_size,
- 'seed': seed,
- 'batch_size': batch_size}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.batch(batch_size, drop_remainder=True)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
-
- filename = "test_case_2_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_case_2_reverse():
- """
- Test Shuffle then Batch
- """
- logger.info("Test Shuffle then Batch")
- # define parameters
- buffer_size = 5
- seed = 0
- batch_size = 2
- parameters = {"params": {'buffer_size': buffer_size,
- 'seed': seed,
- 'batch_size': batch_size}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
- data1 = data1.batch(batch_size, drop_remainder=True)
-
- filename = "test_case_2_reverse_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|