You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 12 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. # Contents
  2. - [SSD Description](#ssd-description)
  3. - [Model Architecture](#model-architecture)
  4. - [Dataset](#dataset)
  5. - [Environment Requirements](#environment-requirements)
  6. - [Quick Start](#quick-start)
  7. - [Script Description](#script-description)
  8. - [Script and Sample Code](#script-and-sample-code)
  9. - [Script Parameters](#script-parameters)
  10. - [Training Process](#training-process)
  11. - [Training](#training)
  12. - [Evaluation Process](#evaluation-process)
  13. - [Evaluation](#evaluation)
  14. - [Model Description](#model-description)
  15. - [Performance](#performance)
  16. - [Evaluation Performance](#evaluation-performance)
  17. - [Inference Performance](#evaluation-performance)
  18. - [Description of Random Situation](#description-of-random-situation)
  19. - [ModelZoo Homepage](#modelzoo-homepage)
  20. # [SSD Description](#contents)
  21. SSD discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape.Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
  22. [Paper](https://arxiv.org/abs/1512.02325): Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.European Conference on Computer Vision (ECCV), 2016 (In press).
  23. # [Model Architecture](#contents)
  24. The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections.
  25. # [Dataset](#contents)
  26. Dataset used: [COCO2017](<http://images.cocodataset.org/>)
  27. - Dataset size:19G
  28. - Train:18G,118000 images
  29. - Val:1G,5000 images
  30. - Annotations:241M,instances,captions,person_keypoints etc
  31. - Data format:image and json files
  32. - Note:Data will be processed in dataset.py
  33. # [Environment Requirements](#contents)
  34. - Install [MindSpore](https://www.mindspore.cn/install/en).
  35. - Download the dataset COCO2017.
  36. - We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.
  37. 1. If coco dataset is used. **Select dataset to coco when run script.**
  38. Install Cython and pycocotool, and you can also install mmcv to process data.
  39. ```
  40. pip install Cython
  41. pip install pycocotools
  42. ```
  43. And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows:
  44. ```
  45. .
  46. └─cocodataset
  47. ├─annotations
  48. ├─instance_train2017.json
  49. └─instance_val2017.json
  50. ├─val2017
  51. └─train2017
  52. ```
  53. 2. If your own dataset is used. **Select dataset to other when run script.**
  54. Organize the dataset infomation into a TXT file, each row in the file is as follows:
  55. ```
  56. train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
  57. ```
  58. Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), `IMAGE_DIR` and `ANNO_PATH` are setting in `config.py`.
  59. # [Quick Start](#contents)
  60. After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
  61. ```
  62. # distributed training on Ascend
  63. sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE]
  64. # run eval on Ascend
  65. sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  66. ```
  67. # [Script Description](#contents)
  68. ## [Script and Sample Code](#contents)
  69. ```shell
  70. .
  71. └─ cv
  72. └─ ssd
  73. ├─ README.md ## descriptions about SSD
  74. ├─ scripts
  75. └─ run_distribute_train.sh ## shell script for distributed on ascend
  76. └─ run_eval.sh ## shell script for eval on ascend
  77. ├─ src
  78. ├─ __init__.py ## init file
  79. ├─ box_util.py ## bbox utils
  80. ├─ coco_eval.py ## coco metrics utils
  81. ├─ config.py ## total config
  82. ├─ dataset.py ## create dataset and process dataset
  83. ├─ init_params.py ## parameters utils
  84. ├─ lr_schedule.py ## learning ratio generator
  85. └─ ssd.py ## ssd architecture
  86. ├─ eval.py ## eval scripts
  87. └─ train.py ## train scripts
  88. ```
  89. ## [Script Parameters](#contents)
  90. ```
  91. Major parameters in train.py and config.py as follows:
  92. "device_num": 1 # Use device nums
  93. "lr": 0.05 # Learning rate init value
  94. "dataset": coco # Dataset name
  95. "epoch_size": 500 # Epoch size
  96. "batch_size": 32 # Batch size of input tensor
  97. "pre_trained": None # Pretrained checkpoint file path
  98. "pre_trained_epoch_size": 0 # Pretrained epoch size
  99. "save_checkpoint_epochs": 10 # The epoch interval between two checkpoints. By default, the checkpoint will be saved per 10 epochs
  100. "loss_scale": 1024 # Loss scale
  101. "class_num": 81 # Dataset class number
  102. "image_shape": [300, 300] # Image height and width used as input to the model
  103. "mindrecord_dir": "/data/MindRecord_COCO" # MindRecord path
  104. "coco_root": "/data/coco2017" # COCO2017 dataset path
  105. "voc_root": "" # VOC original dataset path
  106. "image_dir": "" # Other dataset image path, if coco or voc used, it will be useless
  107. "anno_path": "" # Other dataset annotation path, if coco or voc used, it will be useless
  108. ```
  109. ## [Training Process](#contents)
  110. ### Training on Ascend
  111. To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
  112. - Distribute mode
  113. ```
  114. sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
  115. ```
  116. We need five or seven parameters for this scripts.
  117. - `DEVICE_NUM`: the device number for distributed train.
  118. - `EPOCH_NUM`: epoch num for distributed train.
  119. - `LR`: learning rate init value for distributed train.
  120. - `DATASET`:the dataset mode for distributed train.
  121. - `RANK_TABLE_FILE :` the path of [rank_table.json](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools), it is better to use absolute path.
  122. - `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
  123. - `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
  124. Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in log
  125. ```
  126. epoch: 1 step: 458, loss is 3.1681802
  127. epoch time: 228752.4654865265, per step time: 499.4595316299705
  128. epoch: 2 step: 458, loss is 2.8847265
  129. epoch time: 38912.93382644653, per step time: 84.96273761232868
  130. epoch: 3 step: 458, loss is 2.8398118
  131. epoch time: 38769.184827804565, per step time: 84.64887516987896
  132. ...
  133. epoch: 498 step: 458, loss is 0.70908034
  134. epoch time: 38771.079778671265, per step time: 84.65301261718616
  135. epoch: 499 step: 458, loss is 0.7974688
  136. epoch time: 38787.413120269775, per step time: 84.68867493508685
  137. epoch: 500 step: 458, loss is 0.5548882
  138. epoch time: 39064.8467540741, per step time: 85.29442522723602
  139. ```
  140. ## [Evaluation Process](#contents)
  141. ### Evaluation on Ascend
  142. ```
  143. sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  144. ```
  145. We need two parameters for this scripts.
  146. - `DATASET`:the dataset mode of evaluation dataset.
  147. - `CHECKPOINT_PATH`: the absolute path for checkpoint file.
  148. - `DEVICE_ID`: the device id for eval.
  149. > checkpoint can be produced in training process.
  150. Inference result will be stored in the example path, whose folder name begins with "eval". Under this, you can find result like the followings in log.
  151. ```
  152. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.238
  153. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.400
  154. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.240
  155. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.039
  156. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.198
  157. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.438
  158. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.250
  159. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.389
  160. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
  161. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.122
  162. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.434
  163. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.697
  164. ========================================
  165. mAP: 0.23808886505483504
  166. ```
  167. # [Model Description](#contents)
  168. ## [Performance](#contents)
  169. ### Evaluation Performance
  170. | Parameters | Ascend |
  171. | -------------------------- | -------------------------------------------------------------|
  172. | Model Version | SSD V1 |
  173. | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
  174. | uploaded Date | 06/01/2020 (month/day/year) |
  175. | MindSpore Version | 0.3.0-alpha |
  176. | Dataset | COCO2017 |
  177. | Training Parameters | epoch = 500, batch_size = 32 |
  178. | Optimizer | Momentum |
  179. | Loss Function | Sigmoid Cross Entropy,SmoothL1Loss |
  180. | Speed | 8pcs: 90ms/step |
  181. | Total time | 8pcs: 4.81hours |
  182. | Parameters (M) | 34 |
  183. | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd |
  184. ### Inference Performance
  185. | Parameters | Ascend |
  186. | ------------------- | ----------------------------|
  187. | Model Version | SSD V1 |
  188. | Resource | Ascend 910 |
  189. | Uploaded Date | 06/01/2020 (month/day/year) |
  190. | MindSpore Version | 0.3.0-alpha |
  191. | Dataset | COCO2017 |
  192. | batch_size | 1 |
  193. | outputs | mAP |
  194. | Accuracy | IoU=0.50: 23.8% |
  195. | Model for inference | 34M(.ckpt file) |
  196. # [Description of Random Situation](#contents)
  197. In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
  198. # [ModelZoo Homepage](#contents)
  199. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).