|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Evaluate MobilenetV2 on ImageNet"""
-
- import os
- import argparse
-
- from mindspore import context
- from mindspore import nn
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.quant import quant
-
- from src.mobilenetV2 import mobilenetV2
- from src.dataset import create_dataset
- from src.config import config_ascend_quant
- from src.config import config_gpu_quant
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--device_target', type=str, default=None, help='Run device target')
- args_opt = parser.parse_args()
-
- if __name__ == '__main__':
- config_device_target = None
- device_id = int(os.getenv('DEVICE_ID'))
- if args_opt.device_target == "Ascend":
- config_device_target = config_ascend_quant
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
- device_id=device_id, save_graphs=False)
- elif args_opt.device_target == "GPU":
- config_device_target = config_gpu_quant
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU",
- device_id=device_id, save_graphs=False)
- else:
- raise ValueError("Unsupported device target: {}.".format(args_opt.device_target))
-
- # define fusion network
- network = mobilenetV2(num_classes=config_device_target.num_classes)
- # convert fusion network to quantization aware network
- network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
- # define network loss
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
-
- # define dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=False,
- config=config_device_target,
- device_target=args_opt.device_target,
- batch_size=config_device_target.batch_size)
- step_size = dataset.get_dataset_size()
-
- # load checkpoint
- if args_opt.checkpoint_path:
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- not_load_param = load_param_into_net(network, param_dict)
- if not_load_param:
- raise ValueError("Load param into net fail!")
- network.set_train(False)
-
- # define model
- model = Model(network, loss_fn=loss, metrics={'acc'})
-
- print("============== Starting Validation ==============")
- res = model.eval(dataset)
- print("result:", res, "ckpt=", args_opt.checkpoint_path)
- print("============== End Validation ==============")
|