|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """create tinybert dataset"""
-
- from enum import Enum
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine.datasets as de
- import mindspore.dataset.transforms.c_transforms as C
-
-
- class DataType(Enum):
- """Enumerate supported dataset format"""
- TFRECORD = 1
- MINDRECORD = 2
-
-
- def create_dataset(batch_size=32, device_num=1, rank=0, do_shuffle="true", data_dir=None,
- data_type='tfrecord', seq_length=128, task_type=mstype.int32, drop_remainder=True):
- """create tinybert dataset"""
- if isinstance(data_dir, list):
- data_files = data_dir
- else:
- data_files = [data_dir]
-
- columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
-
- shuffle = (do_shuffle == "true")
-
- if data_type == 'mindrecord':
- ds = de.MindDataset(data_files, columns_list=columns_list, shuffle=shuffle, num_shards=device_num,
- shard_id=rank)
- else:
- ds = de.TFRecordDataset(data_files, columns_list=columns_list, shuffle=shuffle, num_shards=device_num,
- shard_id=rank, shard_equal_rows=(device_num == 1))
-
- if device_num == 1 and shuffle is True:
- ds = ds.shuffle(10000)
-
- type_cast_op = C.TypeCast(mstype.int32)
- slice_op = C.Slice(slice(0, seq_length, 1))
- label_type = mstype.int32 if task_type == 'classification' else mstype.float32
- ds = ds.map(operations=[type_cast_op, slice_op], input_columns=["segment_ids"])
- ds = ds.map(operations=[type_cast_op, slice_op], input_columns=["input_mask"])
- ds = ds.map(operations=[type_cast_op, slice_op], input_columns=["input_ids"])
- ds = ds.map(operations=[C.TypeCast(label_type), slice_op], input_columns=["label_ids"])
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=drop_remainder)
-
- return ds
|