|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import time
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import context, Tensor, ParameterTuple
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.nn.optim import Momentum
- from mindspore.nn.wrap.cell_wrapper import WithLossCell
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
-
- np.random.seed(1)
-
-
- grad_by_list = C.GradOperation(get_by_list=True)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- class LeNet(nn.Cell):
- """
- Lenet network
- Args:
- num_class (int): Num classes, Default: 10.
- Returns:
- Tensor, output tensor
- Examples:
- >>> LeNet(num_class=10)
- """
-
- def __init__(self, num_class=10):
- super(LeNet, self).__init__()
- self.num_class = num_class
- self.batch_size = 32
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (self.batch_size, -1))
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- class CrossEntropyLoss(nn.Cell):
- """
- Define loss for network
- """
-
- def __init__(self):
- super(CrossEntropyLoss, self).__init__()
- self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean()
- self.one_hot = P.OneHot()
- self.on_value = Tensor(1.0, mstype.float32)
- self.off_value = Tensor(0.0, mstype.float32)
- self.num = Tensor(32.0, mstype.float32)
-
- def construct(self, logits, label):
- label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
- loss = self.cross_entropy(logits, label)[0]
- loss = P.RealDiv()(P.ReduceSum()(loss, -1), self.num)
- return loss
-
-
- class GradWrap(nn.Cell):
- """
- GradWrap definition
- """
-
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
-
- def construct(self, x, label):
- weights = self.weights
- return grad_by_list(self.network, weights)(x, label)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_ascend_pynative_lenet():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
-
- epoch_size = 20
- batch_size = 32
- inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32))
- labels = Tensor(np.ones([batch_size]).astype(np.int32))
-
- net = LeNet()
- criterion = CrossEntropyLoss()
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
-
- net_with_criterion = WithLossCell(net, criterion)
- train_network = GradWrap(net_with_criterion)
- train_network.set_train()
- total_time = 0
-
- for epoch in range(0, epoch_size):
- start_time = time.time()
- fw_output = net(inputs)
- loss_output = criterion(fw_output, labels)
- grads = train_network(inputs, labels)
- optimizer(grads)
- end_time = time.time()
- cost_time = end_time - start_time
- total_time = total_time + cost_time
-
- print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
- assert loss_output.asnumpy() < 0.004
- assert loss_output.asnumpy() > 0.003
|