|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import composite as C
-
- def smoothl1loss(beta):
- np.random.seed(42)
- prediction = np.random.randn(20).astype(np.float32)
- target = np.random.randn(20).astype(np.float32)
-
- net = nn.SmoothL1Loss(beta)
- return net(Tensor(prediction), Tensor(target))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_smoothl1loss():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
- epsilon = 1e-6
-
- beta = 1.0
- loss = smoothl1loss(beta)
- expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304,
- 2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008,
- 0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174,
- 0.08826803, 1.109165]
- diff = np.absolute(loss.asnumpy() - np.array(expect))
- assert(diff < epsilon).all()
-
- beta = 1 / 9
- loss = smoothl1loss(beta)
- expect = [0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504,
- 2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524,
- 0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619,
- 0.3646064, 1.5536094]
- diff = np.absolute(loss.asnumpy() - np.array(expect))
- assert(diff < epsilon).all()
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = C.GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- def construct(self, x1, x2, sens):
- gout = self.grad(self.network)(x1, x2, sens)
- return gout
-
-
- def smoothl1loss_grad(beta):
- np.random.seed(42)
- prediction = np.random.randn(20).astype(np.float32)
- target = np.random.randn(20).astype(np.float32)
- sens = np.random.randn(20).astype(np.float32)
-
- net = nn.SmoothL1Loss(beta)
- grad = Grad(net)
- return grad(Tensor(prediction), Tensor(target), Tensor(sens))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_smoothl1loss_grad():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
-
- epsilon = 1e-6
-
- beta = 1.0
- dx = smoothl1loss_grad(beta)
- dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093,
- 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229,
- 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995,
- 0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451]
-
- dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093,
- -0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229,
- -0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995,
- -0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451]
-
- diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
- diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
- assert(diff1 < epsilon).all()
- assert(diff2 < epsilon).all()
-
- beta = 1 / 9
- dx = smoothl1loss_grad(beta)
- dx1_expect = [-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522,
- 0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402,
- 0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995,
- 0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451]
- dx2_expect = [0.73846656, -0.13497104, 0.11564828, 0.30110368, 1.478522,
- -0.7198442, 0.46063876, -1.0571222, -0.3436183, 1.7630402,
- -0.32408398, -0.38508227, 0.676922, 0.6116763, 1.0309995,
- -0.93128014, -0.83921754, 0.3092124, -0.33126342, 0.9755451]
-
- diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
- diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
- assert(diff1 < epsilon).all()
- assert(diff2 < epsilon).all()
|