|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.ops import composite as C
- from mindspore.common.tensor import Tensor
- from mindspore.common.parameter import ParameterTuple, Parameter
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class LstmNet(nn.Cell):
- def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
- super(LstmNet, self).__init__()
-
- num_directions = 1
- if bidirectional:
- num_directions = 2
-
- self.lstm = nn.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
- input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]],
- [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]],
- [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]],
- [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]],
- [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]]
- ]).astype(np.float32)
- self.x = Tensor(input_np)
-
- self.h = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype(
- np.float32))
-
- self.c = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype(
- np.float32))
- self.h = tuple((self.h,))
- self.c = tuple((self.c,))
- wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01],
- [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i
- [-3.2140e-01, 5.5578e-01, 6.3589e-01],
- [1.6547e-01, -7.9030e-02, -2.0045e-01],
- [-6.9863e-01, 5.9773e-01, -3.9062e-01],
- [-3.0253e-01, -1.9464e-01, 7.0591e-01],
- [-4.0835e-01, 3.6751e-01, 4.7989e-01],
- [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1])
- whh = np.array([[-0.4820, -0.2350],
- [-0.1195, 0.0519],
- [0.2162, -0.1178],
- [0.6237, 0.0711],
- [0.4511, -0.3961],
- [-0.5962, 0.0906],
- [0.1867, -0.1225],
- [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1])
- bih = np.zeros((1, 8)).astype(np.float32)
- w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1])
- self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w')
- self.lstm.weight = ParameterTuple((self.w,))
-
- @ms_function
- def construct(self):
- return self.lstm(self.x, (self.h, self.c))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_lstm():
- seq_len = 5
- batch_size = 2
- input_size = 3
- hidden_size = 2
- num_layers = 1
- has_bias = True
- bidirectional = False
- dropout = 0.0
- num_directions = 1
- if bidirectional:
- num_directions = 2
- net = LstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
- y, (h, c) = net()
- print(y)
- print(c)
- print(h)
- expect_y = [[[-0.17992045, 0.07819052],
- [-0.10745212, -0.06291768]],
-
- [[-0.28830513, 0.30579978],
- [-0.07570618, -0.08868407]],
-
- [[-0.00814095, 0.16889746],
- [0.02814853, -0.11208838]],
-
- [[0.08157863, 0.06088024],
- [-0.04227093, -0.11514835]],
-
- [[0.18908429, -0.02963362],
- [0.09106826, -0.00602506]]]
- expect_h = [[[0.18908429, -0.02963362],
- [0.09106826, -0.00602506]]]
- expect_c = [[[0.3434288, -0.06561527],
- [0.16838229, -0.00972614]]]
-
- diff_y = y.asnumpy() - expect_y
- error_y = np.ones([seq_len, batch_size, hidden_size]) * 1.0e-4
- assert np.all(diff_y < error_y)
- assert np.all(-diff_y < error_y)
- diff_h = h.asnumpy() - expect_h
- error_h = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4
- assert np.all(diff_h < error_h)
- assert np.all(-diff_h < error_h)
- diff_c = c.asnumpy() - expect_c
- error_c = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4
- assert np.all(diff_c < error_c)
- assert np.all(-diff_c < error_c)
-
-
- class MultiLayerBiLstmNet(nn.Cell):
- def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
- super(MultiLayerBiLstmNet, self).__init__()
-
- num_directions = 1
- if bidirectional:
- num_directions = 2
-
- self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias,
- bidirectional=bidirectional, dropout=dropout)
-
- input_np = np.array([[[-0.1887, -0.4144, -0.0235, 0.7489, 0.7522, 0.5969, 0.3342, 1.2198, 0.6786, -0.9404],
- [-0.8643, -1.6835, -2.4965, 2.8093, 0.1741, 0.2707, 0.7387, -0.0939, -1.7990, 0.4765]],
-
- [[-0.5963, -1.2598, -0.7226, 1.1365, -1.7320, -0.7302, 0.1221, -0.2111, -1.6173, -0.0706],
- [0.8964, 0.1737, -1.0077, -0.1389, 0.4889, 0.4391, 0.7911, 0.3614, -1.9533, -0.9936]],
-
- [[0.3260, -1.3312, 0.0601, 1.0726, -1.6010, -1.8733, -1.5775, 1.1579, -0.8801, -0.5742],
- [-2.2998, -0.6344, -0.5409, -0.9221, -0.6500, 0.1206, 1.5215, 0.7517, 1.3691, 2.0021]],
-
- [[-0.1245, -0.3690, 2.1193, 1.3852, -0.1841, -0.8899, -0.3646, -0.8575, -0.3131, 0.2026],
- [1.0218, -1.4331, 0.1744, 0.5442, -0.7808, 0.2527, 0.1566, 1.1484, -0.7766, -0.6747]],
-
- [[-0.6752, 0.9906, -0.4973, 0.3471, -0.1202, -0.4213, 2.0213, 0.0441, 0.9016, 1.0365],
- [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804,
- -1.0685]]]).astype(np.float32)
-
- self.x = Tensor(input_np)
-
- self.h0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
- self.c0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
- self.h1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
- self.c1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
-
- self.h = tuple((self.h0, self.h1))
- self.c = tuple((self.c0, self.c1))
- input_size_list = [input_size, hidden_size * num_directions]
- weights = []
- bias_size = 0 if not has_bias else num_directions * hidden_size * 4
- for i in range(num_layers):
- weight_size = (input_size_list[i] + hidden_size) * num_directions * hidden_size * 4
- w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.02
- if has_bias:
- bias_np = np.zeros([bias_size, 1, 1]).astype(np.float32)
- w_np = np.concatenate([w_np, bias_np], axis=0)
- weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name='weight' + str(i)))
- self.lstm.weight = weights
-
- @ms_function
- def construct(self):
- return self.lstm(self.x, (self.h, self.c))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_multi_layer_bilstm():
- batch_size = 2
- input_size = 10
- hidden_size = 2
- num_layers = 2
- has_bias = True
- bidirectional = True
- dropout = 0.0
-
- net = MultiLayerBiLstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional,
- dropout)
- y, (h, c) = net()
- print(y)
- print(h)
- print(c)
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.network = network
- self.weights = ParameterTuple(network.trainable_params())
- self.grad = C.GradOperation(get_by_list=True,
- sens_param=True)
-
- @ms_function
- def construct(self, output_grad):
- weights = self.weights
- grads = self.grad(self.network, weights)(output_grad)
- return grads
-
-
- class Net(nn.Cell):
- def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
- super(Net, self).__init__()
-
- num_directions = 1
- if bidirectional:
- num_directions = 2
- input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]],
- [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]],
- [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]],
- [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]],
- [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]]
- ]).astype(np.float32)
- self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x')
- self.hlist = []
- self.clist = []
- self.hlist.append(Parameter(initializer(
- Tensor(
- np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_directions, batch_size, hidden_size)).astype(
- np.float32)),
- [num_directions, batch_size, hidden_size]), name='h'))
- self.clist.append(Parameter(initializer(
- Tensor(
- np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_directions, batch_size, hidden_size)).astype(
- np.float32)),
- [num_directions, batch_size, hidden_size]), name='c'))
- self.h = ParameterTuple(tuple(self.hlist))
- self.c = ParameterTuple(tuple(self.clist))
- wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01],
- [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i
- [-3.2140e-01, 5.5578e-01, 6.3589e-01],
- [1.6547e-01, -7.9030e-02, -2.0045e-01],
- [-6.9863e-01, 5.9773e-01, -3.9062e-01],
- [-3.0253e-01, -1.9464e-01, 7.0591e-01],
- [-4.0835e-01, 3.6751e-01, 4.7989e-01],
- [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1])
- whh = np.array([[-0.4820, -0.2350],
- [-0.1195, 0.0519],
- [0.2162, -0.1178],
- [0.6237, 0.0711],
- [0.4511, -0.3961],
- [-0.5962, 0.0906],
- [0.1867, -0.1225],
- [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1])
- bih = np.zeros((1, 8)).astype(np.float32)
- w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1])
- self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='weight0')
- self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,
- has_bias=has_bias, bidirectional=bidirectional, dropout=dropout)
- self.lstm.weight = ParameterTuple(tuple([self.w]))
-
- @ms_function
- def construct(self):
- return self.lstm(self.x, (self.h, self.c))[0]
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_grad():
- seq_len = 5
- batch_size = 2
- input_size = 3
- hidden_size = 2
- num_layers = 1
- has_bias = False
- bidirectional = False
- dropout = 0.0
- net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout))
- dy = np.array([[[-3.5471e-01, 7.0540e-01],
- [2.7161e-01, 1.0865e+00]],
-
- [[-4.2431e-01, 1.4955e+00],
- [-4.0418e-01, -2.3282e-01]],
-
- [[-1.3654e+00, 1.9251e+00],
- [-4.6481e-01, 1.3138e+00]],
-
- [[1.2914e+00, -2.3753e-01],
- [5.3589e-01, -1.0981e-01]],
-
- [[-1.6032e+00, -1.8818e-01],
- [1.0065e-01, 9.2045e-01]]]).astype(np.float32)
- dx, dhx, dcx, dw = net(Tensor(dy))
- print(dx)
- print(dhx)
- print(dcx)
- print(dw)
-
- test_multi_layer_bilstm()
- test_lstm()
- test_grad()
|