You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_lstm_op.py 14 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. import numpy as np
  17. import mindspore.nn as nn
  18. import mindspore.context as context
  19. from mindspore.common.api import ms_function
  20. from mindspore.common.initializer import initializer
  21. from mindspore.ops import composite as C
  22. from mindspore.common.tensor import Tensor
  23. from mindspore.common.parameter import ParameterTuple, Parameter
  24. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  25. class LstmNet(nn.Cell):
  26. def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
  27. super(LstmNet, self).__init__()
  28. num_directions = 1
  29. if bidirectional:
  30. num_directions = 2
  31. self.lstm = nn.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
  32. input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]],
  33. [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]],
  34. [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]],
  35. [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]],
  36. [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]]
  37. ]).astype(np.float32)
  38. self.x = Tensor(input_np)
  39. self.h = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype(
  40. np.float32))
  41. self.c = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype(
  42. np.float32))
  43. self.h = tuple((self.h,))
  44. self.c = tuple((self.c,))
  45. wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01],
  46. [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i
  47. [-3.2140e-01, 5.5578e-01, 6.3589e-01],
  48. [1.6547e-01, -7.9030e-02, -2.0045e-01],
  49. [-6.9863e-01, 5.9773e-01, -3.9062e-01],
  50. [-3.0253e-01, -1.9464e-01, 7.0591e-01],
  51. [-4.0835e-01, 3.6751e-01, 4.7989e-01],
  52. [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1])
  53. whh = np.array([[-0.4820, -0.2350],
  54. [-0.1195, 0.0519],
  55. [0.2162, -0.1178],
  56. [0.6237, 0.0711],
  57. [0.4511, -0.3961],
  58. [-0.5962, 0.0906],
  59. [0.1867, -0.1225],
  60. [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1])
  61. bih = np.zeros((1, 8)).astype(np.float32)
  62. w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1])
  63. self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w')
  64. self.lstm.weight = ParameterTuple((self.w,))
  65. @ms_function
  66. def construct(self):
  67. return self.lstm(self.x, (self.h, self.c))
  68. @pytest.mark.level0
  69. @pytest.mark.platform_x86_cpu
  70. @pytest.mark.env_onecard
  71. def test_lstm():
  72. seq_len = 5
  73. batch_size = 2
  74. input_size = 3
  75. hidden_size = 2
  76. num_layers = 1
  77. has_bias = True
  78. bidirectional = False
  79. dropout = 0.0
  80. num_directions = 1
  81. if bidirectional:
  82. num_directions = 2
  83. net = LstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
  84. y, (h, c) = net()
  85. print(y)
  86. print(c)
  87. print(h)
  88. expect_y = [[[-0.17992045, 0.07819052],
  89. [-0.10745212, -0.06291768]],
  90. [[-0.28830513, 0.30579978],
  91. [-0.07570618, -0.08868407]],
  92. [[-0.00814095, 0.16889746],
  93. [0.02814853, -0.11208838]],
  94. [[0.08157863, 0.06088024],
  95. [-0.04227093, -0.11514835]],
  96. [[0.18908429, -0.02963362],
  97. [0.09106826, -0.00602506]]]
  98. expect_h = [[[0.18908429, -0.02963362],
  99. [0.09106826, -0.00602506]]]
  100. expect_c = [[[0.3434288, -0.06561527],
  101. [0.16838229, -0.00972614]]]
  102. diff_y = y.asnumpy() - expect_y
  103. error_y = np.ones([seq_len, batch_size, hidden_size]) * 1.0e-4
  104. assert np.all(diff_y < error_y)
  105. assert np.all(-diff_y < error_y)
  106. diff_h = h.asnumpy() - expect_h
  107. error_h = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4
  108. assert np.all(diff_h < error_h)
  109. assert np.all(-diff_h < error_h)
  110. diff_c = c.asnumpy() - expect_c
  111. error_c = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4
  112. assert np.all(diff_c < error_c)
  113. assert np.all(-diff_c < error_c)
  114. class MultiLayerBiLstmNet(nn.Cell):
  115. def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
  116. super(MultiLayerBiLstmNet, self).__init__()
  117. num_directions = 1
  118. if bidirectional:
  119. num_directions = 2
  120. self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias,
  121. bidirectional=bidirectional, dropout=dropout)
  122. input_np = np.array([[[-0.1887, -0.4144, -0.0235, 0.7489, 0.7522, 0.5969, 0.3342, 1.2198, 0.6786, -0.9404],
  123. [-0.8643, -1.6835, -2.4965, 2.8093, 0.1741, 0.2707, 0.7387, -0.0939, -1.7990, 0.4765]],
  124. [[-0.5963, -1.2598, -0.7226, 1.1365, -1.7320, -0.7302, 0.1221, -0.2111, -1.6173, -0.0706],
  125. [0.8964, 0.1737, -1.0077, -0.1389, 0.4889, 0.4391, 0.7911, 0.3614, -1.9533, -0.9936]],
  126. [[0.3260, -1.3312, 0.0601, 1.0726, -1.6010, -1.8733, -1.5775, 1.1579, -0.8801, -0.5742],
  127. [-2.2998, -0.6344, -0.5409, -0.9221, -0.6500, 0.1206, 1.5215, 0.7517, 1.3691, 2.0021]],
  128. [[-0.1245, -0.3690, 2.1193, 1.3852, -0.1841, -0.8899, -0.3646, -0.8575, -0.3131, 0.2026],
  129. [1.0218, -1.4331, 0.1744, 0.5442, -0.7808, 0.2527, 0.1566, 1.1484, -0.7766, -0.6747]],
  130. [[-0.6752, 0.9906, -0.4973, 0.3471, -0.1202, -0.4213, 2.0213, 0.0441, 0.9016, 1.0365],
  131. [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804,
  132. -1.0685]]]).astype(np.float32)
  133. self.x = Tensor(input_np)
  134. self.h0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
  135. self.c0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
  136. self.h1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
  137. self.c1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32))
  138. self.h = tuple((self.h0, self.h1))
  139. self.c = tuple((self.c0, self.c1))
  140. input_size_list = [input_size, hidden_size * num_directions]
  141. weights = []
  142. bias_size = 0 if not has_bias else num_directions * hidden_size * 4
  143. for i in range(num_layers):
  144. weight_size = (input_size_list[i] + hidden_size) * num_directions * hidden_size * 4
  145. w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.02
  146. if has_bias:
  147. bias_np = np.zeros([bias_size, 1, 1]).astype(np.float32)
  148. w_np = np.concatenate([w_np, bias_np], axis=0)
  149. weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name='weight' + str(i)))
  150. self.lstm.weight = weights
  151. @ms_function
  152. def construct(self):
  153. return self.lstm(self.x, (self.h, self.c))
  154. @pytest.mark.level0
  155. @pytest.mark.platform_x86_cpu
  156. @pytest.mark.env_onecard
  157. def test_multi_layer_bilstm():
  158. batch_size = 2
  159. input_size = 10
  160. hidden_size = 2
  161. num_layers = 2
  162. has_bias = True
  163. bidirectional = True
  164. dropout = 0.0
  165. net = MultiLayerBiLstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional,
  166. dropout)
  167. y, (h, c) = net()
  168. print(y)
  169. print(h)
  170. print(c)
  171. class Grad(nn.Cell):
  172. def __init__(self, network):
  173. super(Grad, self).__init__()
  174. self.network = network
  175. self.weights = ParameterTuple(network.trainable_params())
  176. self.grad = C.GradOperation(get_by_list=True,
  177. sens_param=True)
  178. @ms_function
  179. def construct(self, output_grad):
  180. weights = self.weights
  181. grads = self.grad(self.network, weights)(output_grad)
  182. return grads
  183. class Net(nn.Cell):
  184. def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
  185. super(Net, self).__init__()
  186. num_directions = 1
  187. if bidirectional:
  188. num_directions = 2
  189. input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]],
  190. [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]],
  191. [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]],
  192. [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]],
  193. [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]]
  194. ]).astype(np.float32)
  195. self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x')
  196. self.hlist = []
  197. self.clist = []
  198. self.hlist.append(Parameter(initializer(
  199. Tensor(
  200. np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_directions, batch_size, hidden_size)).astype(
  201. np.float32)),
  202. [num_directions, batch_size, hidden_size]), name='h'))
  203. self.clist.append(Parameter(initializer(
  204. Tensor(
  205. np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_directions, batch_size, hidden_size)).astype(
  206. np.float32)),
  207. [num_directions, batch_size, hidden_size]), name='c'))
  208. self.h = ParameterTuple(tuple(self.hlist))
  209. self.c = ParameterTuple(tuple(self.clist))
  210. wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01],
  211. [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i
  212. [-3.2140e-01, 5.5578e-01, 6.3589e-01],
  213. [1.6547e-01, -7.9030e-02, -2.0045e-01],
  214. [-6.9863e-01, 5.9773e-01, -3.9062e-01],
  215. [-3.0253e-01, -1.9464e-01, 7.0591e-01],
  216. [-4.0835e-01, 3.6751e-01, 4.7989e-01],
  217. [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1])
  218. whh = np.array([[-0.4820, -0.2350],
  219. [-0.1195, 0.0519],
  220. [0.2162, -0.1178],
  221. [0.6237, 0.0711],
  222. [0.4511, -0.3961],
  223. [-0.5962, 0.0906],
  224. [0.1867, -0.1225],
  225. [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1])
  226. bih = np.zeros((1, 8)).astype(np.float32)
  227. w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1])
  228. self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='weight0')
  229. self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,
  230. has_bias=has_bias, bidirectional=bidirectional, dropout=dropout)
  231. self.lstm.weight = ParameterTuple(tuple([self.w]))
  232. @ms_function
  233. def construct(self):
  234. return self.lstm(self.x, (self.h, self.c))[0]
  235. @pytest.mark.level0
  236. @pytest.mark.platform_x86_cpu
  237. @pytest.mark.env_onecard
  238. def test_grad():
  239. seq_len = 5
  240. batch_size = 2
  241. input_size = 3
  242. hidden_size = 2
  243. num_layers = 1
  244. has_bias = False
  245. bidirectional = False
  246. dropout = 0.0
  247. net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout))
  248. dy = np.array([[[-3.5471e-01, 7.0540e-01],
  249. [2.7161e-01, 1.0865e+00]],
  250. [[-4.2431e-01, 1.4955e+00],
  251. [-4.0418e-01, -2.3282e-01]],
  252. [[-1.3654e+00, 1.9251e+00],
  253. [-4.6481e-01, 1.3138e+00]],
  254. [[1.2914e+00, -2.3753e-01],
  255. [5.3589e-01, -1.0981e-01]],
  256. [[-1.6032e+00, -1.8818e-01],
  257. [1.0065e-01, 9.2045e-01]]]).astype(np.float32)
  258. dx, dhx, dcx, dw = net(Tensor(dy))
  259. print(dx)
  260. print(dhx)
  261. print(dcx)
  262. print(dw)
  263. test_multi_layer_bilstm()
  264. test_lstm()
  265. test_grad()