You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_relu_grad.py 1.7 kB

5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.common.api import ms_function
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.composite import GradOperation
  22. context.set_context(device_target="Ascend")
  23. class Grad(nn.Cell):
  24. def __init__(self, network):
  25. super(Grad, self).__init__()
  26. self.grad = GradOperation(get_all=True, sens_param=True)
  27. self.network = network
  28. @ms_function
  29. def construct(self, input_, output_grad):
  30. return self.grad(self.network)(input_, output_grad)
  31. class Net(nn.Cell):
  32. def __init__(self):
  33. super(Net, self).__init__()
  34. self.relu = P.ReLU(strategy=None)
  35. def construct(self, x):
  36. return self.relu(x)
  37. def test_net():
  38. x = np.random.randn(2, 3, 3, 4).astype(np.float32)
  39. sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
  40. net = Grad(Net())
  41. output = net(Tensor(x), Tensor(sens))
  42. print(len(output))
  43. print(output[0].asnumpy())