|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
- from mindspore.ops.composite import GradOperation
-
- context.set_context(device_target="Ascend")
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = GradOperation(get_all=True, sens_param=True)
- self.network = network
-
- @ms_function
- def construct(self, input_, output_grad):
- return self.grad(self.network)(input_, output_grad)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.relu = P.ReLU(strategy=None)
-
- def construct(self, x):
- return self.relu(x)
-
-
- def test_net():
- x = np.random.randn(2, 3, 3, 4).astype(np.float32)
- sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
- net = Grad(Net())
- output = net(Tensor(x), Tensor(sens))
- print(len(output))
- print(output[0].asnumpy())
|