|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test gnn aggregator."""
- import numpy as np
- from aggregator import MeanAggregator, AttentionHead, AttentionAggregator
-
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.ops.composite as C
- from mindspore import Tensor
- from mindspore.common.api import _executor
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
-
-
- class MeanAggregatorGrad(nn.Cell):
- """Backward of MeanAggregator"""
-
- def __init__(self, network):
- super(MeanAggregatorGrad, self).__init__()
- self.grad_op = grad_all_with_sens
- self.network = network
-
- def construct(self, x, sens):
- grad_op = self.grad_op(self.network)(x, sens)
- return grad_op
-
-
- def test_MeanAggregator():
- """Compile MeanAggregator forward graph"""
- aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
- input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
- _executor.compile(aggregator, input_data)
-
-
- def test_MeanAggregator_grad():
- """Compile MeanAggregator backward graph"""
- aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
- input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
- sens = Tensor(np.ones([32, 64]).astype(np.float32))
- grad_op = MeanAggregatorGrad(aggregator)
- _executor.compile(grad_op, input_data, sens)
-
-
- def test_AttentionHead():
- """Compile AttentionHead forward graph"""
- head = AttentionHead(1433,
- 8,
- in_drop_ratio=0.6,
- coef_drop_ratio=0.6,
- residual=False)
- input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
- biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
- _executor.compile(head, input_data, biases)
-
-
- def test_AttentionAggregator():
- input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
- biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
- net = AttentionAggregator(1433, 8, 8)
- _executor.compile(net, input_data, biases)
|