|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test control ops """
- import numpy as np
-
- from mindspore import dtype as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- # from tests.vm_impl.math_ops_vm_impl import *
- # from tests.vm_impl.vm_interface import *
- # from tests.vm_impl import *
- # context.set_context(save_graphs=True)
-
-
- grad_by_list = C.GradOperation(get_by_list=True)
- grad_all = C.GradOperation(get_all=True)
-
-
- def test_while_forward():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
-
- def construct(self, idx, end, x):
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- idx = idx + 1
- return x
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
-
- def construct(self, idx, end, x):
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- idx = idx + 1
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_forward():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_endless_case():
- """endless case when optmization"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- out = out + part
- idx = idx + 1
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_forward_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_opt_endless():
- """endless during optimization case"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.addn = P.AddN()
-
- def construct(self, idx, end, x):
- addn1 = self.addn((x, x, x))
- out = addn1
- while idx < end:
- out = self.addn((out, addn1))
- idx = idx + 1
- out = self.addn((out, x))
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32) * 3, dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_no_while_call():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_for_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_for_while_with_param_grad_basic():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_for_while_with_param_grad_normal():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = x
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_basic_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_basic_grad_mul():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.ones(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out * self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_basic_grad_two():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_basic_grad_three():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.key = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="key")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight + self.key
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_if_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if self.max(out) < self.max(x):
- out = out + self.param * 2
- else:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_while_with_param_grad_not_enter_while():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param * 3
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(3), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_with_param_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param
- else:
- out = out + x
- if a == b:
- out = out + x*3 + self.param
- else:
- out = out + x*2
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_with_param_if_by_if_grad_inputs():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 4
- if a == b:
- out = out + x*3 + self.param * 3
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_with_param_if_by_if_grad_parameter():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- if a == b:
- out = out + x*3 + self.param
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_with_param_if_by_if_grad_param_excute_null():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(4), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_if_by_if_return_inside_grad():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- return out + x + self.param
- if a == b:
- return out + self.param * 2
- return out + self.param * 3
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(1), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(4), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_if_by_if_forward_control_tuple_switch():
- """tuple_get from swtich op will generate new switch inside to eliminate tuple_get"""
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- return a, b, x
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- a, b, x = self.net(a, b, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
-
-
- def test_if_by_if_forward_control_inside_net():
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- out = self.net(a, b, x)
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
-
- def test_if_by_if_forward_use_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = P.TensorAdd()(a, b)
- else:
- a = P.Sub()(a, b)
- if a == x:
- a = P.Mul()(a, b)
- else:
- a = P.RealDiv()(a, b)
- if b == x:
- b = P.TensorAdd()(a, b)
- else:
- b = P.TensorAdd()(a, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_if_by_if_forward_use_global_op():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.TensorAdd()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if a == x:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
- def test_for_with_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
-
- def construct(self, a, b, x):
- for _ in range(0, 4):
- if a < b:
- a = self.add(a, b)
- else:
- b = self.sub(b, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
-
- def test_for_with_if_by_if_forward_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- for _ in range(0, 6):
- if a < b:
- a = P.TensorAdd()(a, b)
- else:
- b = P.Sub()(b, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
-
- def test_if_by_if_forward_const_branch_inner():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.TensorAdd()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
-
-
-
-
- def test_if_by_if_forward_all_const_branch():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.TensorAdd()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if 2 < 12:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if 2 == 1:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- net(idx, end, x)
|