You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self,):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. class HistogramSummaryNet(nn.Cell):
  122. def __init__(self,):
  123. super(HistogramSummaryNet, self).__init__()
  124. self.summary = P.HistogramSummary()
  125. self.add = P.TensorAdd()
  126. def construct(self, x, y):
  127. out = self.add(x, y)
  128. string_in = "out"
  129. self.summary(string_in, out)
  130. return out
  131. test_case_math_ops = [
  132. ('Neg', {
  133. 'block': P.Neg(),
  134. 'desc_inputs': [[1, 3, 4, 4]],
  135. 'desc_bprop': [[1, 3, 4, 4]]}),
  136. ('Sub', {
  137. 'block': P.Sub(),
  138. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  139. 'desc_bprop': [[2, 3, 3, 5]]}),
  140. ('TensorAdd', {
  141. 'block': P.TensorAdd(),
  142. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  143. 'desc_bprop': [[2, 3, 3, 5]]}),
  144. ('Mul0', {
  145. 'block': P.Mul(),
  146. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  147. 'desc_bprop': [[2, 3, 3, 5]]}),
  148. ('Mul1', {
  149. 'block': P.Mul(),
  150. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  151. 'desc_bprop': [[2, 3, 3, 5]]}),
  152. ('Mul2', {
  153. 'block': P.Mul(),
  154. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  155. 'desc_bprop': [[2, 3, 3, 5]],
  156. 'skip': ['backward']}),
  157. ('Mul3', {
  158. 'block': P.Mul(),
  159. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]],
  161. 'skip': ['backward']}),
  162. ('Mul4', {
  163. 'block': P.Mul(),
  164. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  165. 'desc_bprop': [[2, 3, 3, 5]],
  166. 'skip': ['backward']}),
  167. ('Add0', {
  168. 'block': P.TensorAdd(),
  169. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  170. 'desc_bprop': [[2, 3, 3, 5]]}),
  171. ('Add1', {
  172. 'block': P.TensorAdd(),
  173. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add2', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  179. 'desc_bprop': [[2, 3, 3, 5]],
  180. 'skip': ['backward']}),
  181. ('Add3', {
  182. 'block': P.TensorAdd(),
  183. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  184. 'desc_bprop': [[2, 3, 3, 5]],
  185. 'skip': ['backward']}),
  186. ('Add4', {
  187. 'block': P.TensorAdd(),
  188. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  189. 'desc_bprop': [[2, 3, 3, 5]],
  190. 'skip': ['backward']}),
  191. ('Minimum', {
  192. 'block': P.Minimum(),
  193. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  194. 'desc_bprop': [[2, 3, 3, 5]]}),
  195. ('Pow_0', {
  196. 'block': P.Pow(),
  197. 'desc_const': [2.0],
  198. 'desc_inputs': [[2, 3, 3, 5]],
  199. 'desc_bprop': [[2, 3, 3, 5]]}),
  200. ('Pow_1', {
  201. 'block': P.Pow(),
  202. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  203. 'desc_bprop': [[2, 3, 3, 5]]}),
  204. ('Exp', {
  205. 'block': P.Exp(),
  206. 'desc_inputs': [[2, 3]],
  207. 'desc_bprop': [[2, 3]]}),
  208. ('Erf', {
  209. 'block': P.Erf(),
  210. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  211. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  212. ('Floor', {
  213. 'block': P.Floor(),
  214. 'desc_inputs': [[2, 512, 56, 56]],
  215. 'desc_bprop': [[2, 512, 56, 56]],
  216. 'skip': ['backward']}),
  217. ('ACos', {
  218. 'block': P.ACos(),
  219. 'desc_inputs': [[2, 3]],
  220. 'desc_bprop': [[2, 3]]}),
  221. ('Acosh', {
  222. 'block': P.Acosh(),
  223. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  224. 'skip': ['backward']}),
  225. ('Sin', {
  226. 'block': P.Sin(),
  227. 'desc_inputs': [[2, 3]],
  228. 'desc_bprop': [[2, 3]]}),
  229. ('Reciprocal', {
  230. 'block': P.Reciprocal(),
  231. 'desc_inputs': [[2, 3, 3, 5]],
  232. 'desc_bprop': [[2, 3, 3, 5]]}),
  233. ('Minimum_0', {
  234. 'block': P.Minimum(),
  235. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  236. 'desc_bprop': [[2, 3, 3, 5]]}),
  237. ('Maximum', {
  238. 'block': P.Maximum(),
  239. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  240. 'desc_bprop': [[2, 3, 3, 5]]}),
  241. ('Maximum_0', {
  242. 'block': P.Maximum(),
  243. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  244. 'desc_bprop': [[2, 3, 3, 5]]}),
  245. ('MaximumGrad', {
  246. 'block': G.MaximumGrad(),
  247. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  248. 'skip': ['backward']}),
  249. ('MinimumGrad', {
  250. 'block': G.MinimumGrad(),
  251. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  252. 'skip': ['backward']}),
  253. ('StridedSlice', {
  254. 'block': P.StridedSlice(),
  255. 'desc_const': [(0, 1, 2, 1),
  256. (2, 3, 3, 4),
  257. (1, 1, 1, 1)],
  258. 'desc_inputs': [[2, 3, 3, 5]],
  259. 'desc_bprop': [[2, 2, 1, 3]]}),
  260. ('Slice_1', {
  261. 'block': P.Slice(),
  262. 'desc_const': [(0, 1, 2, 1),
  263. (1, 1, 1, 2)],
  264. 'desc_inputs': [[2, 3, 3, 5]],
  265. 'desc_bprop': [[1, 1, 1, 2]]}),
  266. ('StridedSliceGrad', {
  267. 'block': G.StridedSliceGrad(),
  268. 'desc_const': [(64, 1, 1024),
  269. (0, 1, 0),
  270. (64, 2, 1024),
  271. (1, 1, 1)],
  272. 'desc_inputs': [[64, 128, 1024]],
  273. 'skip': ['backward']}),
  274. ('RandomChoiceWithMask', {
  275. 'block': P.RandomChoiceWithMask(256),
  276. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  277. 'desc_bprop': [[256,4], [256,4]],
  278. 'skip': ['backward']}),
  279. ('LessEqual', {
  280. 'block': P.LessEqual(),
  281. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  282. Tensor(np.random.rand(4).astype(np.float16))],
  283. 'skip': ['backward']}),
  284. ('Less', {
  285. 'block': P.Less(),
  286. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  287. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  288. 'skip': ['backward']}),
  289. ('RealDiv_0', {
  290. 'block': P.RealDiv(),
  291. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  292. 'desc_inputs': [],
  293. 'skip': ['backward']}),
  294. ('RealDiv', {
  295. 'block': P.RealDiv(),
  296. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  297. 'desc_bprop': [[4]]}),
  298. ('RealDiv_1', {
  299. 'block': P.RealDiv(),
  300. 'desc_inputs': [[512, 1024], [512, 1024]],
  301. 'desc_bprop': [[512, 1024]]}),
  302. ('FloorDiv', {
  303. 'block': P.FloorDiv(),
  304. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  305. Tensor(np.random.rand(4).astype(np.float16))],
  306. 'skip': ['backward']}),
  307. ('FloorMod', {
  308. 'block': P.FloorMod(),
  309. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  310. Tensor(np.random.rand(4).astype(np.float16))],
  311. 'skip': ['backward']}),
  312. ('identity', {
  313. 'block': ops.functional.identity,
  314. 'desc_inputs': [[2, 2]],
  315. 'skip': ['backward']}),
  316. ('MatMul_1', {
  317. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  318. 'desc_inputs': [[1024, 160], [160, 1024]],
  319. 'desc_bprop': [[1024, 1024]]}),
  320. ('MatMul_2', {
  321. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  322. 'desc_inputs': [[160, 1024], [1024, 160]],
  323. 'desc_bprop': [[1024, 1024]]}),
  324. ('Sub', {
  325. 'block': P.Sub(),
  326. 'desc_inputs': [[3], [3]],
  327. 'desc_bprop': [[3]]}),
  328. ('TruncatedNormal', {
  329. 'block': P.TruncatedNormal(),
  330. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  331. 'desc_inputs': [],
  332. 'skip': ['backward'],
  333. 'add_fake_input': True}),
  334. ('Select', {
  335. 'block': P.Select(),
  336. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  337. [2, 3], [2, 3]],
  338. 'desc_bprop': [[2, 3]]}),
  339. ('Rank', {
  340. 'block': P.Rank(),
  341. 'desc_inputs': [[2, 3]],
  342. 'skip': ['backward']}),
  343. ('InvertPermutation', {
  344. 'block': P.InvertPermutation(),
  345. 'desc_const': [(0, 3, 1, 2)],
  346. 'desc_inputs': [],
  347. 'skip': ['backward']}),
  348. ('Square', {
  349. 'block': P.Square(),
  350. 'desc_inputs': [[4]],
  351. 'desc_bprop': [[4]]}),
  352. ('Rsqrt', {
  353. 'block': P.Rsqrt(),
  354. 'desc_inputs': [[4]],
  355. 'desc_bprop': [[4]]}),
  356. ('Sqrt', {
  357. 'block': P.Sqrt(),
  358. 'desc_inputs': [[4]],
  359. 'desc_bprop': [[4]]}),
  360. ('RealDiv', {
  361. 'block': P.RealDiv(),
  362. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  363. 'desc_bprop': [[2, 3, 4, 5]]}),
  364. ('Div', {
  365. 'block': P.Div(),
  366. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  367. 'desc_bprop': [[2, 3, 4, 5]]}),
  368. ('Equal', {
  369. 'block': P.Equal(),
  370. 'desc_inputs': [[3, 4, 5], [4, 5]],
  371. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  372. ('NotEqual', {
  373. 'block': P.NotEqual(),
  374. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  375. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  376. ('NotEqual_0', {
  377. 'block': P.NotEqual(),
  378. 'desc_inputs': [ 1, [2, 3, 4, 5]],
  379. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  380. 'skip': ['backward']}),
  381. ('Greater', {
  382. 'block': P.Greater(),
  383. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  384. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  385. ('GreaterEqual', {
  386. 'block': P.GreaterEqual(),
  387. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  388. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  389. ('LogicalNot', {
  390. 'block': P.LogicalNot(),
  391. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  392. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  393. ('LogicalAnd', {
  394. 'block': P.LogicalAnd(),
  395. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  396. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  397. ('LogicalOr', {
  398. 'block': P.LogicalOr(),
  399. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  400. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  401. ('NpuAllocFloatStatus', {
  402. 'block': P.NPUAllocFloatStatus(),
  403. 'desc_inputs': [],
  404. 'add_fack_input': True,
  405. 'fack_input_type': np.float32,
  406. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  407. 'skip': ['backward']}),
  408. ('NpuGetFloatStatus', {
  409. 'block': P.NPUGetFloatStatus(),
  410. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  411. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  412. 'skip': ['backward']}),
  413. ('NpuClearFloatStatus', {
  414. 'block': P.NPUClearFloatStatus(),
  415. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  416. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  417. 'skip': ['backward']}),
  418. ('CheckValid', {
  419. 'block': P.CheckValid(),
  420. 'desc_inputs': [[20000, 4], [3]],
  421. 'desc_bprop': [[20000]],
  422. 'skip': ['backward']}),
  423. ('NMSWithMask', {
  424. 'block': P.NMSWithMask(0.5),
  425. 'desc_inputs': [[128, 5]],
  426. 'desc_bprop': [[128, 5], [128], [128]],
  427. 'skip': ['backward']}),
  428. ('Abs', {
  429. 'block': P.Abs(),
  430. 'desc_inputs': [[4]],
  431. 'desc_bprop': [[4]]}),
  432. ('CumSum', {
  433. 'block': P.CumSum(),
  434. 'desc_const': [0],
  435. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  436. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  437. ('ReduceSum_3', {
  438. 'block': P.ReduceSum(),
  439. 'desc_const': [0],
  440. 'desc_inputs': [[3, 2]],
  441. 'desc_bprop': [[2]]}),
  442. ('ReduceSum_4', {
  443. 'block': P.ReduceSum(keep_dims=True),
  444. 'desc_const': [0],
  445. 'desc_inputs': [[3, 2]],
  446. 'desc_bprop': [[1, 2]]}),
  447. ('ReduceSum_5', {
  448. 'block': P.ReduceSum(keep_dims=True),
  449. 'desc_inputs': [[2, 3, 4]],
  450. 'desc_bprop': [[1, 1, 1]]}),
  451. ('ReduceSum_6', {
  452. 'block': P.ReduceSum(),
  453. 'desc_inputs': [[2, 3, 4]],
  454. 'desc_bprop': [[1]]}),
  455. ('Sum_0', {
  456. 'block': P.ReduceSum(),
  457. 'desc_const': [(1,)],
  458. 'desc_inputs': [[3, 2]],
  459. 'desc_bprop': [[3]]}),
  460. ('Sum_1', {
  461. 'block': P.ReduceSum(keep_dims=True),
  462. 'desc_const': [(1,)],
  463. 'desc_inputs': [[3, 2]],
  464. 'desc_bprop': [[3, 1]]}),
  465. ('Sum_2', {
  466. 'block': P.ReduceSum(),
  467. 'desc_const': [(0, 1)],
  468. 'desc_inputs': [[3, 2]],
  469. 'desc_bprop': [[1]]}),
  470. ('Sum_3', {
  471. 'block': P.ReduceSum(),
  472. 'desc_const': [0],
  473. 'desc_inputs': [[3, 2]],
  474. 'desc_bprop': [[2]]}),
  475. ('Sum_4', {
  476. 'block': P.ReduceSum(keep_dims=True),
  477. 'desc_const': [0],
  478. 'desc_inputs': [[3, 2]],
  479. 'desc_bprop': [[1, 2]]}),
  480. ('Sum_5', {
  481. 'block': P.ReduceSum(keep_dims=True),
  482. 'desc_const': [()],
  483. 'desc_inputs': [[2, 3, 4]],
  484. 'desc_bprop': [[1, 1, 1]]}),
  485. ('Sum_6', {
  486. 'block': P.ReduceSum(),
  487. 'desc_const': [()],
  488. 'desc_inputs': [[2, 3, 4]],
  489. 'desc_bprop': [[1]]}),
  490. ('Sign', {
  491. 'block': P.Sign(),
  492. 'desc_inputs': [[3]],
  493. 'desc_bprop': [[3]]}),
  494. ('Round', {
  495. 'block': P.Round(),
  496. 'desc_inputs': [[3]],
  497. 'desc_bprop': [[3]]}),
  498. ('Atan2', {
  499. 'block': P.Atan2(),
  500. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  501. Tensor(np.array([1, 1]).astype(np.float32))],
  502. 'desc_bprop': [[2]]})
  503. ]
  504. test_case_nn_ops = [
  505. ('BiasAdd', {
  506. 'block': P.BiasAdd(),
  507. 'desc_inputs': [[1, 3, 3, 3], [3]],
  508. 'desc_bprop': [[1, 3, 3, 3]]}),
  509. ('BiasAddGrad', {
  510. 'block': G.BiasAddGrad(),
  511. 'desc_inputs': [[1, 3, 3, 3]],
  512. 'skip': ['backward']}),
  513. ('Gelu', {
  514. 'block': P.Gelu(),
  515. 'desc_inputs': [[1, 3, 4, 4]],
  516. 'desc_bprop': [[1, 3, 4, 4]]}),
  517. ('GeluGrad', {
  518. 'block': G.GeluGrad(),
  519. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  520. 'desc_bprop': [[2, 2]],
  521. 'skip': ['backward']}),
  522. ('Tanh', {
  523. 'block': P.Tanh(),
  524. 'desc_inputs': [[1, 3, 4, 4]],
  525. 'desc_bprop': [[1, 3, 4, 4]]}),
  526. ('TanhGrad', {
  527. 'block': G.TanhGrad(),
  528. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  529. 'desc_bprop': [[1, 3, 4, 4]],
  530. 'skip': ['backward']}),
  531. ('ReLU', {
  532. 'block': P.ReLU(),
  533. 'desc_inputs': [[1, 3, 4, 4]],
  534. 'desc_bprop': [[1, 3, 4, 4]]}),
  535. ('ReLU6', {
  536. 'block': P.ReLU6(),
  537. 'desc_inputs': [[1, 3, 4, 4]],
  538. 'desc_bprop': [[1, 3, 4, 4]]}),
  539. ('ReLUGrad', {
  540. 'block': G.ReluGrad(),
  541. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  542. 'skip': ['backward']}),
  543. ('Elu', {
  544. 'block': P.Elu(),
  545. 'desc_inputs': [[2, 3, 4]],
  546. 'desc_bprop': [[2, 3, 4]]}),
  547. ('EluGrad', {
  548. 'block': G.EluGrad(),
  549. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  550. 'desc_bprop': [[2, 3, 4]],
  551. 'skip': ['backward']}),
  552. ('Sigmoid', {
  553. 'block': P.Sigmoid(),
  554. 'desc_inputs': [[1, 3, 4, 4]],
  555. 'desc_bprop': [[1, 3, 4, 4]]}),
  556. ('MaxPool', {
  557. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  558. 'desc_inputs': [[100, 3, 28, 28]],
  559. 'desc_bprop': [[100, 3, 14, 14]]}),
  560. ('MaxPoolGrad', {
  561. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  562. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  563. 'desc_bprop': [[3, 4, 6, 6]],
  564. 'skip': ['backward']}),
  565. ('AvgPool', {
  566. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  567. 'desc_inputs': [[100, 3, 28, 28]],
  568. 'desc_bprop': [[100, 3, 14, 14]]}),
  569. ('AvgPoolGrad', {
  570. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  571. 'desc_const': [(3, 4, 6, 6)],
  572. 'const_first': True,
  573. 'desc_inputs': [[3, 4, 6, 6]],
  574. 'desc_bprop': [[3, 4, 6, 6]],
  575. 'skip': ['backward']}),
  576. ('MaxPoolWithArgmax', {
  577. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  578. 'desc_inputs': [[128, 32, 32, 64]],
  579. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  580. ('SoftmaxCrossEntropyWithLogits', {
  581. 'block': P.SoftmaxCrossEntropyWithLogits(),
  582. 'desc_inputs': [[1, 10], [1, 10]],
  583. 'desc_bprop': [[1], [1, 10]],
  584. 'skip': ['backward_exec']}),
  585. ('Flatten', {
  586. 'block': P.Flatten(),
  587. 'desc_inputs': [[128, 32, 32, 64]],
  588. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  589. ('LogSoftmax', {
  590. 'block': P.LogSoftmax(),
  591. 'desc_inputs': [[64, 2]],
  592. 'desc_bprop': [[160, 30522]]}),
  593. ('LogSoftmaxGrad', {
  594. 'block': G.LogSoftmaxGrad(),
  595. 'desc_inputs': [[16, 1234], [16, 1234]],
  596. 'desc_bprop': [[64, 2]],
  597. 'skip': ['backward']}),
  598. ('LayerNorm', {
  599. 'block': P.LayerNorm(),
  600. 'desc_inputs': [[2, 16], [16], [16]],
  601. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  602. ('LayerNormGrad', {
  603. 'block': G.LayerNormGrad(),
  604. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  605. 'desc_bprop': [[2, 16], [16], [16]],
  606. 'skip': ['backward']}),
  607. ('FusedBatchNorm', {
  608. 'block': P.FusedBatchNorm(),
  609. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  610. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  611. 'skip': []}),
  612. ('FusedBatchNormGrad', {
  613. 'block': G.FusedBatchNormGrad(),
  614. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  615. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  616. 'skip': ['backward']}),
  617. ('BatchNorm', {
  618. 'block': P.BatchNorm(),
  619. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  620. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  621. 'skip': []}),
  622. ('BatchNormGrad', {
  623. 'block': G.BatchNormGrad(),
  624. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  625. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  626. 'skip': ['backward']}),
  627. ('ApplyMomentum', {
  628. 'block': P.ApplyMomentum(),
  629. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  630. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  631. 'desc_bprop': [[128, 32, 32, 64]],
  632. 'skip': ['backward']}),
  633. ('TopK', {
  634. 'block': P.TopK(),
  635. 'desc_const': [5],
  636. 'desc_inputs': [[20, 20, 10]],
  637. 'desc_bprop': [[20, 20, 5]],
  638. 'skip': ['backward']}),
  639. ('GatherV2_0', {
  640. 'block': P.GatherV2(),
  641. 'desc_const': [0],
  642. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  643. 'desc_bprop': [[2, 1, 2]]}),
  644. ('GatherV2_1', {
  645. 'block': P.GatherV2(),
  646. 'desc_const': [2],
  647. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  648. 'desc_bprop': [[3, 1, 2]]}),
  649. ('GatherV2_2', {
  650. 'block': P.GatherV2(),
  651. 'desc_const': [0],
  652. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  653. 'desc_bprop': [[3, 2, 1, 3]]}),
  654. ('GatherV2_3', {
  655. 'block': P.GatherV2(),
  656. 'desc_const': [2],
  657. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  658. 'desc_bprop': [[3, 1, 3, 2]]}),
  659. ('GatherV2_4', {
  660. 'block': P.GatherV2(),
  661. 'desc_const': [1],
  662. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  663. 'desc_bprop': [[32, 1, 1024]]}),
  664. ('GatherV2_5', {
  665. 'block': P.GatherV2(),
  666. 'desc_const': [-1],
  667. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  668. 'desc_bprop': [[3, 1, 2]]}),
  669. ('GatherV2_6', {
  670. 'block': P.GatherV2(),
  671. 'desc_const': [0],
  672. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  673. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  674. ('UnsortedSegmentSum', {
  675. 'block': P.UnsortedSegmentSum(),
  676. 'desc_const': [1280],
  677. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  678. 'desc_bprop': [[8192,1024]],
  679. 'skip': ['backward']}),
  680. ('UnsortedSegmentSum_1', {
  681. 'block': P.UnsortedSegmentSum(),
  682. 'desc_const': [4],
  683. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  684. 'desc_bprop': [[4, 1, 3]],
  685. 'skip': ['backward']}),
  686. ('DropoutGenMask', {
  687. 'block': P.DropoutGenMask(),
  688. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  689. 'desc_inputs': [],
  690. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  691. 'skip': ['backward']}),
  692. ('DropoutDoMask', {
  693. 'block': P.DropoutDoMask(),
  694. 'desc_const': [Tensor(0.5)],
  695. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  696. 'desc_bprop': [[64, 12, 128, 128]]}),
  697. ('Dropout', {
  698. 'block': nn.Dropout(0.5),
  699. 'desc_inputs': [[64, 12, 128, 128]],
  700. 'desc_bprop': [[64, 12, 128, 128]]}),
  701. ('ReduceMean0', {
  702. 'block': P.ReduceMean(),
  703. 'desc_const': [(2,)],
  704. 'desc_inputs': [[3, 2, 2]],
  705. 'desc_bprop': [[3, 2]]}),
  706. ('ReduceMean1', {
  707. 'block': P.ReduceMean(),
  708. 'desc_const': [2],
  709. 'desc_inputs': [[3, 2, 2]],
  710. 'desc_bprop': [[3, 2]]}),
  711. ('All', {
  712. 'block': P.ReduceAll(),
  713. 'desc_const': [(1,)],
  714. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  715. 'desc_bprop': [[3]],
  716. 'skip': ['backward']}),
  717. ('DescConst', {
  718. 'block': Tensor(np.array([2], np.float32)),
  719. 'desc_inputs': [],
  720. 'desc_bprop': [[1]],
  721. 'skip': ['backward'],
  722. 'add_fake_input': True}),
  723. ('Fill', {
  724. 'block': P.Fill(),
  725. 'desc_const': [mstype.float32, (2, 3), 1.0],
  726. 'desc_inputs': [],
  727. 'desc_bprop': [[2, 3]],
  728. 'skip': ['backward'],
  729. 'add_fake_input': True}),
  730. ('OnesLike', {
  731. 'block': P.OnesLike(),
  732. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  733. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  734. }),
  735. ('ZerosLike', {
  736. 'block': P.ZerosLike(),
  737. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  738. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  739. }),
  740. ('Softmax', {
  741. 'block': P.Softmax(),
  742. 'desc_inputs': [[5, 5]],
  743. 'desc_bprop': [[5, 5]]}),
  744. ('DepthwiseConv2dNative_1', {
  745. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  746. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  747. 'desc_bprop': [[10, 30, 16, 16]]}),
  748. ('DepthwiseConv2dNative_2', {
  749. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  750. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  751. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  752. ('SigmoidCrossEntropyWithLogits', {
  753. 'block': P.SigmoidCrossEntropyWithLogits(),
  754. 'desc_inputs': [[128, 10], [128, 10]],
  755. 'desc_bprop': [[128, 10]]}),
  756. ('Pad', {
  757. 'block': P.Pad(((1, 2), (2, 3))),
  758. 'desc_inputs': [[7, 7]],
  759. 'desc_bprop': [[10, 12]]}),
  760. ('BinaryCrossEntropy', {
  761. 'block': P.BinaryCrossEntropy(),
  762. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  763. 'desc_bprop': []}),
  764. ('SparseApplyAdagrad', {
  765. 'block': P.SparseApplyAdagrad(0.5),
  766. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  767. 'desc_bprop': [3, 3],
  768. 'skip': ['backward']}),
  769. ('Flatten_1', {
  770. 'block': NetForFlatten(),
  771. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  772. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  773. 'skip': ['backward']}),
  774. ('Flatten_2', {
  775. 'block': NetForFlatten(),
  776. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  777. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  778. 'skip': ['backward']}),
  779. ('ArgmaxNet', {
  780. 'block': ArgmaxNet(),
  781. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  782. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  783. 'skip': ['backward']}),
  784. ('ArgminNet', {
  785. 'block': ArgminNet(),
  786. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  787. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  788. 'skip': ['backward']}),
  789. ('CumSumNet', {
  790. 'block': CumSumNet(),
  791. 'desc_const': [0],
  792. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  793. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  794. ('OneHot', {
  795. 'block': P.OneHot(),
  796. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  797. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  798. 'desc_bprop': [[64, 2]]}),
  799. ('ReduceProd_0', {
  800. 'block': P.ReduceProd(),
  801. 'desc_const': [0],
  802. 'desc_inputs': [[3, 2]],
  803. 'desc_bprop': [[2]]}),
  804. ('ReduceProd_1', {
  805. 'block': P.ReduceProd(keep_dims=True),
  806. 'desc_const': [0],
  807. 'desc_inputs': [[3, 2]],
  808. 'desc_bprop': [[1, 2]]}),
  809. ('CumProd', {
  810. 'block': P.CumProd(),
  811. 'desc_const': [0],
  812. 'desc_inputs': [[3, 2]],
  813. 'desc_bprop': [[3, 2]]}),
  814. ('ApplyFtrl', {
  815. 'block': P.ApplyFtrl(),
  816. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  817. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  818. 'desc_bprop': [3, 3],
  819. 'skip': ['backward']}),
  820. ('ApplyRMSProp', {
  821. 'block': P.ApplyRMSProp(),
  822. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  823. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  824. 'desc_bprop': [3, 3],
  825. 'skip': ['backward']}),
  826. ('ApplyCenteredRMSProp', {
  827. 'block': P.ApplyCenteredRMSProp(),
  828. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  829. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  830. 'desc_bprop': [3, 3],
  831. 'skip': ['backward']}),
  832. ('L2Loss_1', {
  833. 'block': P.L2Loss(),
  834. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float16)],
  835. 'desc_bprop': []}),
  836. ('L2Loss_2', {
  837. 'block': P.L2Loss(),
  838. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  839. 'desc_bprop': []}),
  840. ]
  841. test_case_array_ops = [
  842. ('SpaceToDepth', {
  843. 'block': P.SpaceToDepth(2),
  844. 'desc_inputs': [[1, 3, 2, 2]],
  845. 'desc_bprop': [[1, 12, 1, 1]]}),
  846. ('DepthToSpace', {
  847. 'block': P.DepthToSpace(2),
  848. 'desc_inputs': [[1, 12, 1, 1]],
  849. 'desc_bprop': [[1, 3, 2, 2]]}),
  850. ('Split', {
  851. 'block': P.Split(1, 2),
  852. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  853. 'skip': ['backward']}),
  854. ('Argmax', {
  855. 'block': P.Argmax(),
  856. 'desc_inputs': [[128, 32, 32, 64]],
  857. 'desc_bprop': [0],
  858. 'skip': ['backward']}),
  859. ('Argmin', {
  860. 'block': P.Argmin(),
  861. 'desc_inputs': [[128, 32, 32, 64]],
  862. 'desc_bprop': [1],
  863. 'skip': ['backward']}),
  864. ('ArgMaxWithValue', {
  865. 'block': P.ArgMaxWithValue(),
  866. 'desc_inputs': [[128, 32, 32, 64]],
  867. 'desc_bprop': [[1], [1]],
  868. 'skip': ['backward']}),
  869. ('ArgMinWithValue', {
  870. 'block': P.ArgMinWithValue(),
  871. 'desc_inputs': [[128, 32, 32, 64]],
  872. 'desc_bprop': [[1], [1]],
  873. 'skip': ['backward']}),
  874. ('Transpose_dim3', {
  875. 'block': P.Transpose(),
  876. 'desc_const': [(0, 2, 1)],
  877. 'desc_inputs': [[1, 2, 3]],
  878. 'desc_bprop': [[1, 3, 2]]}),
  879. ('Transpose_dim4', {
  880. 'block': P.Transpose(),
  881. 'desc_const': [(0, 1, 2, 3)],
  882. 'desc_inputs': [[1, 2, 3, 4]],
  883. 'desc_bprop': [[1, 2, 4, 3]]}),
  884. ('AddN', {
  885. 'block': NetForTupleInput(P.AddN()),
  886. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  887. 'desc_bprop': [[2, 3, 3, 5]],
  888. 'skip': ['backward']}),
  889. ('Shape', {
  890. 'block': P.Shape(),
  891. 'desc_inputs': [[3, 3, 2, 2]],
  892. 'skip': ['backward']}),
  893. ('Reshape', {
  894. 'block': P.Reshape(),
  895. 'desc_const': [(64,)],
  896. 'desc_inputs': [[64, 1]],
  897. 'desc_bprop': [[64]]}),
  898. ('Cast', {
  899. 'block': P.Cast(),
  900. 'desc_const': [mstype.int32],
  901. 'desc_inputs': [[2, 3, 4, 5]],
  902. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  903. ('ExpandDims', {
  904. 'block': P.ExpandDims(),
  905. 'desc_const': [0],
  906. 'desc_inputs': [[2, 2]],
  907. 'desc_bprop': [[1, 2, 2]]}),
  908. ('ExpandDims_1', {
  909. 'block': P.ExpandDims(),
  910. 'desc_const': [-1],
  911. 'desc_inputs': [[2, 2]],
  912. 'desc_bprop': [[2, 2, 1]]}),
  913. ('Squeeze', {
  914. 'block': P.Squeeze(2),
  915. 'desc_inputs': [[3, 2, 1]],
  916. 'desc_bprop': [[3, 2]]}),
  917. ('Squeeze_0', {
  918. 'block': P.Squeeze(),
  919. 'desc_inputs': [[3, 1, 2, 1]],
  920. 'desc_bprop': [[3, 2]]}),
  921. ('Squeeze_1', {
  922. 'block': P.Squeeze(),
  923. 'desc_inputs': [[1, 1, 1, 1]],
  924. 'desc_bprop': [1.0],
  925. 'skip': ['backward']}),
  926. ('Squeeze_2', {
  927. 'block': P.Squeeze((2, 3)),
  928. 'desc_inputs': [[3, 2, 1, 1]],
  929. 'desc_bprop': [[3, 2]]}),
  930. ('Size', {
  931. 'block': P.Size(),
  932. 'desc_inputs': [[2, 3, 5]],
  933. 'skip': ['backward']}),
  934. ('Tile_0', {
  935. 'block': P.Tile(),
  936. 'desc_const': [(1, 2)],
  937. 'desc_inputs': [[64, 1]],
  938. 'desc_bprop': [[64, 2]]}),
  939. ('Tile_1', {
  940. 'block': P.Tile(),
  941. 'desc_const': [(1, 1)],
  942. 'desc_inputs': [[64, 1]],
  943. 'desc_bprop': [[64, 1]]}),
  944. ('Tile_2', {
  945. 'block': P.Tile(),
  946. 'desc_const': [(2, 1, 1, 2)],
  947. 'desc_inputs': [[2, 2, 2]],
  948. 'desc_bprop': [[2, 2, 2, 4]]}),
  949. ('ConcatV2_0', {
  950. 'block': P.Concat(),
  951. 'desc_inputs': [
  952. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  953. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  954. 'desc_bprop': [[4, 2]]}),
  955. ('ConcatV2_1', {
  956. 'block': P.Concat(axis=2),
  957. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  958. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  959. 'desc_bprop': [[2, 1, 5]]}),
  960. ('ConcatV2_2', {
  961. 'block': NetForConcat(),
  962. 'desc_inputs': [[2, 2]],
  963. 'desc_bprop': [[4, 2]]}),
  964. ('ConcatV2_3', {
  965. 'block': NetForConcat1(),
  966. 'desc_inputs': [[2, 2], [2, 2]],
  967. 'desc_bprop': [[4, 2]]}),
  968. ('ConcatV2_4', {
  969. 'block': P.Concat(axis=0),
  970. 'desc_inputs': [
  971. (Tensor(np.ones((3, 2, 3), np.float32)),
  972. Tensor(np.ones((5, 2, 3), np.float32)),
  973. Tensor(np.ones((6, 2, 3), np.float32)))],
  974. 'desc_bprop': [[14, 2, 3]]}),
  975. ('ConcatV2_5', {
  976. 'block': P.Concat(axis=-1),
  977. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  978. Tensor(np.array([1], np.float32)),
  979. Tensor(np.array([1], np.float32)))],
  980. 'desc_bprop': [[3,]]}),
  981. ('Pack_0', {
  982. 'block': NetForPackInput(P.Pack()),
  983. 'desc_inputs':[[2, 2], [2, 2], [2, 2]],
  984. 'desc_bprop':[[3, 2, 2]],
  985. }),
  986. ('Pack_1', {
  987. 'block': NetForPackInput(P.Pack(axis=-2)),
  988. 'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  989. 'desc_bprop':[[3, 2, 3, 3]],
  990. }),
  991. ('Pack_2', {
  992. 'block': NetForPackInput(P.Pack()),
  993. 'desc_inputs':[[2, 2]],
  994. 'desc_bprop':[[2, 2, 2]],
  995. }),
  996. ('Pack_3', {
  997. 'block': NetForPackInput(P.Pack()),
  998. 'desc_inputs':[[128, 128], [128, 128]],
  999. 'desc_bprop':[[2, 128, 128]],
  1000. }),
  1001. ('Unpack_0', {
  1002. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1003. 'desc_inputs':[[2, 4]],
  1004. 'desc_bprop':[[4], [4]],
  1005. }),
  1006. ('Unpack_1', {
  1007. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1008. 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
  1009. 'desc_bprop':[[1], [1], [1]],
  1010. }),
  1011. ('Diag', {
  1012. 'block': P.Diag(),
  1013. 'desc_inputs': [[4]],
  1014. 'desc_bprop': [[4, 4]],
  1015. }),
  1016. ('DiagPart', {
  1017. 'block': P.DiagPart(),
  1018. 'desc_inputs': [[4, 4]],
  1019. 'desc_bprop': [[4]],
  1020. }),
  1021. ('SpaceToBatch_1', {
  1022. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1023. 'desc_inputs': [[1, 3, 2, 2]],
  1024. 'desc_bprop': [[4, 3, 1, 1]],
  1025. }),
  1026. ('SpaceToBatch_2', {
  1027. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1028. 'desc_inputs': [[1, 3, 2, 2]],
  1029. 'desc_bprop': [[4, 3, 2, 4]],
  1030. }),
  1031. ('BatchToSpace_1', {
  1032. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1033. 'desc_inputs': [[4, 3, 1, 1]],
  1034. 'desc_bprop': [[1, 3, 2, 2]],
  1035. }),
  1036. ('BatchToSpace_2', {
  1037. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1038. 'desc_inputs': [[4, 3, 1, 1]],
  1039. 'desc_bprop': [[1, 3, 2, 1]],
  1040. }),
  1041. ]
  1042. test_case_other_ops = [
  1043. ('ScalarLog', {
  1044. 'block': F.scalar_log,
  1045. 'desc_const': [0.0],
  1046. 'desc_inputs': [],
  1047. 'desc_bprop': [1],
  1048. 'skip': ['backward']}),
  1049. ('BoundingBoxEncode', {
  1050. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1051. 'desc_inputs': [[256, 4], [256, 4]],
  1052. 'desc_bprop': [[256, 4]],
  1053. 'skip': ['backward']}),
  1054. ('BoundingBoxDecode', {
  1055. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1056. 'desc_inputs': [[256, 4], [256, 4]],
  1057. 'desc_bprop': [[256, 4]],
  1058. 'skip': ['backward']}),
  1059. ('GatherNd', {
  1060. 'block': P.GatherNd(),
  1061. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1062. Tensor(np.ones((2, 4), np.int32))),
  1063. 'desc_bprop': [[2]]}),
  1064. ('ScatterNdUpdate', {
  1065. 'block': P.ScatterNdUpdate(),
  1066. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1067. Tensor(np.ones((2, 2), np.int32)),
  1068. Tensor(np.ones((2,), np.float32))),
  1069. 'desc_bprop': [[2, 3]]}),
  1070. ('ScatterNd', {
  1071. 'block': P.ScatterNd(),
  1072. 'desc_const': [(3, 3)],
  1073. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1074. Tensor(np.ones((2,), np.int32))),
  1075. 'desc_bprop': [[3, 3]]}),
  1076. ('SmoothL1Loss', {
  1077. 'block': P.SmoothL1Loss(),
  1078. 'desc_inputs': [[256, 4], [256, 4]],
  1079. 'desc_bprop': [[256, 4]]}),
  1080. ('IOU', {
  1081. 'block': P.IOU(),
  1082. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1083. 'desc_bprop': [[128, 256]]}),
  1084. ('Summary', {
  1085. 'block': SummaryNet(),
  1086. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1087. Tensor(np.array([1.2]).astype(np.float32))],
  1088. 'skip': ['backward']}),
  1089. ('HistogramSummary', {
  1090. 'block': HistogramSummaryNet(),
  1091. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1092. Tensor(np.array([1.2]).astype(np.float32))],
  1093. 'skip': ['backward']}),
  1094. ]
  1095. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1096. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1097. # use -k to select certain testcast
  1098. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1099. test_exec_case = test_case
  1100. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1101. 'backward' not in x[1]['skip'], test_case)
  1102. import mindspore.context as context
  1103. @non_graph_engine
  1104. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1105. def test_exec():
  1106. context.set_context(mode=context.GRAPH_MODE)
  1107. return test_exec_case
  1108. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1109. def test_backward_exec():
  1110. context.set_context(mode=context.GRAPH_MODE)
  1111. return test_backward_exec_case
  1112. raise_set = [
  1113. ('Cast_Error', {
  1114. 'block': (P.Cast(), {'exception': TypeError}),
  1115. 'desc_const': [mstype.int32],
  1116. 'desc_inputs': ['wrong input'],
  1117. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1118. ('Maximum_Error', {
  1119. 'block': (P.Maximum(), {'exception': TypeError}),
  1120. 'desc_const': [(1, 2, 3)],
  1121. 'desc_inputs': [[2, 3, 3, 5]],
  1122. 'desc_bprop': [[2, 3, 3, 5]]}),
  1123. ('Shape_error', {
  1124. 'block': (P.Shape(), {'exception': TypeError}),
  1125. 'desc_inputs': [(64, 1)],
  1126. 'desc_bprop': [[64]]}),
  1127. ('Flatten_Error', {
  1128. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1129. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1130. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1131. ]
  1132. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1133. def test_check_exception():
  1134. return raise_set