You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 9.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.ops import operations as P
  20. @pytest.mark.level0
  21. @pytest.mark.platform_x86_gpu_training
  22. @pytest.mark.env_onecard
  23. def test_nobroadcast():
  24. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  25. np.random.seed(42)
  26. x1_np = np.random.rand(10, 20).astype(np.float32)
  27. x2_np = np.random.rand(10, 20).astype(np.float32)
  28. x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  29. x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  30. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  31. output_np = np.minimum(x1_np, x2_np)
  32. assert np.allclose(output_ms.asnumpy(), output_np)
  33. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  34. output_np = np.maximum(x1_np, x2_np)
  35. assert np.allclose(output_ms.asnumpy(), output_np)
  36. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  37. output_np = x1_np > x2_np
  38. assert np.allclose(output_ms.asnumpy(), output_np)
  39. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  40. output_np = x1_np_int32 > x2_np_int32
  41. assert np.allclose(output_ms.asnumpy(), output_np)
  42. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  43. output_np = x1_np < x2_np
  44. assert np.allclose(output_ms.asnumpy(), output_np)
  45. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  46. output_np = x1_np_int32 < x2_np_int32
  47. assert np.allclose(output_ms.asnumpy(), output_np)
  48. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  49. output_np = np.power(x1_np, x2_np)
  50. assert np.allclose(output_ms.asnumpy(), output_np)
  51. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  52. output_np = x1_np / x2_np
  53. assert np.allclose(output_ms.asnumpy(), output_np)
  54. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  55. output_np = x1_np * x2_np
  56. assert np.allclose(output_ms.asnumpy(), output_np)
  57. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  58. output_np = x1_np - x2_np
  59. assert np.allclose(output_ms.asnumpy(), output_np)
  60. @pytest.mark.level0
  61. @pytest.mark.platform_x86_gpu_training
  62. @pytest.mark.env_onecard
  63. def test_nobroadcast_fp16():
  64. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  65. np.random.seed(42)
  66. x1_np = np.random.rand(10, 20).astype(np.float16)
  67. x2_np = np.random.rand(10, 20).astype(np.float16)
  68. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  69. output_np = np.minimum(x1_np, x2_np)
  70. assert np.allclose(output_ms.asnumpy(), output_np)
  71. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  72. output_np = np.maximum(x1_np, x2_np)
  73. assert np.allclose(output_ms.asnumpy(), output_np)
  74. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  75. output_np = x1_np > x2_np
  76. assert np.allclose(output_ms.asnumpy(), output_np)
  77. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  78. output_np = x1_np < x2_np
  79. assert np.allclose(output_ms.asnumpy(), output_np)
  80. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  81. output_np = np.power(x1_np, x2_np)
  82. assert np.allclose(output_ms.asnumpy(), output_np)
  83. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  84. output_np = x1_np / x2_np
  85. assert np.allclose(output_ms.asnumpy(), output_np)
  86. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  87. output_np = x1_np * x2_np
  88. assert np.allclose(output_ms.asnumpy(), output_np)
  89. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  90. output_np = x1_np - x2_np
  91. assert np.allclose(output_ms.asnumpy(), output_np)
  92. @pytest.mark.level0
  93. @pytest.mark.platform_x86_gpu_training
  94. @pytest.mark.env_onecard
  95. def test_broadcast():
  96. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  97. np.random.seed(42)
  98. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  99. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  100. x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  101. x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  102. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  103. output_np = np.minimum(x1_np, x2_np)
  104. assert np.allclose(output_ms.asnumpy(), output_np)
  105. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  106. output_np = np.maximum(x1_np, x2_np)
  107. assert np.allclose(output_ms.asnumpy(), output_np)
  108. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  109. output_np = x1_np > x2_np
  110. assert np.allclose(output_ms.asnumpy(), output_np)
  111. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  112. output_np = x1_np_int32 > x2_np_int32
  113. assert np.allclose(output_ms.asnumpy(), output_np)
  114. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  115. output_np = x1_np < x2_np
  116. assert np.allclose(output_ms.asnumpy(), output_np)
  117. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  118. output_np = x1_np_int32 < x2_np_int32
  119. assert np.allclose(output_ms.asnumpy(), output_np)
  120. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  121. output_np = np.power(x1_np, x2_np)
  122. assert np.allclose(output_ms.asnumpy(), output_np)
  123. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  124. output_np = x1_np / x2_np
  125. assert np.allclose(output_ms.asnumpy(), output_np)
  126. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  127. output_np = x1_np * x2_np
  128. assert np.allclose(output_ms.asnumpy(), output_np)
  129. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  130. output_np = x1_np - x2_np
  131. assert np.allclose(output_ms.asnumpy(), output_np)
  132. @pytest.mark.level0
  133. @pytest.mark.platform_x86_gpu_training
  134. @pytest.mark.env_onecard
  135. def test_broadcast_diff_dims():
  136. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  137. np.random.seed(42)
  138. x1_np = np.random.rand(2).astype(np.float32)
  139. x2_np = np.random.rand(2, 1).astype(np.float32)
  140. x1_np_int32 = np.random.randint(0, 100, (2)).astype(np.int32)
  141. x2_np_int32 = np.random.randint(0, 100, (2, 1)).astype(np.int32)
  142. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  143. output_np = np.minimum(x1_np, x2_np)
  144. assert np.allclose(output_ms.asnumpy(), output_np)
  145. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  146. output_np = np.maximum(x1_np, x2_np)
  147. assert np.allclose(output_ms.asnumpy(), output_np)
  148. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  149. output_np = x1_np_int32 > x2_np_int32
  150. assert np.allclose(output_ms.asnumpy(), output_np)
  151. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  152. output_np = x1_np > x2_np
  153. assert np.allclose(output_ms.asnumpy(), output_np)
  154. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  155. output_np = x1_np < x2_np
  156. assert np.allclose(output_ms.asnumpy(), output_np)
  157. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  158. output_np = x1_np_int32 < x2_np_int32
  159. assert np.allclose(output_ms.asnumpy(), output_np)
  160. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  161. output_np = np.power(x1_np, x2_np)
  162. assert np.allclose(output_ms.asnumpy(), output_np)
  163. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  164. output_np = x1_np / x2_np
  165. assert np.allclose(output_ms.asnumpy(), output_np)
  166. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  167. output_np = x1_np * x2_np
  168. assert np.allclose(output_ms.asnumpy(), output_np)
  169. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  170. output_np = x1_np - x2_np
  171. assert np.allclose(output_ms.asnumpy(), output_np)
  172. @pytest.mark.level0
  173. @pytest.mark.platform_x86_gpu_training
  174. @pytest.mark.env_onecard
  175. def test_broadcast_fp16():
  176. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  177. np.random.seed(42)
  178. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
  179. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float16)
  180. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  181. output_np = np.minimum(x1_np, x2_np)
  182. assert np.allclose(output_ms.asnumpy(), output_np)
  183. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  184. output_np = np.maximum(x1_np, x2_np)
  185. assert np.allclose(output_ms.asnumpy(), output_np)
  186. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  187. output_np = x1_np > x2_np
  188. assert np.allclose(output_ms.asnumpy(), output_np)
  189. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  190. output_np = x1_np < x2_np
  191. assert np.allclose(output_ms.asnumpy(), output_np)
  192. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  193. output_np = np.power(x1_np, x2_np)
  194. assert np.allclose(output_ms.asnumpy(), output_np)
  195. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  196. output_np = x1_np / x2_np
  197. assert np.allclose(output_ms.asnumpy(), output_np)
  198. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  199. output_np = x1_np * x2_np
  200. assert np.allclose(output_ms.asnumpy(), output_np)
  201. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  202. output_np = x1_np - x2_np
  203. assert np.allclose(output_ms.asnumpy(), output_np)