|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for NAML"""
- import os
- import argparse
- import numpy as np
-
- from sklearn.metrics import roc_auc_score
-
- parser = argparse.ArgumentParser(description="")
- parser.add_argument("--result_path", type=str, default="", help="Device id")
- parser.add_argument("--label_path", type=str, default="", help="output file name.")
- args = parser.parse_args()
-
- def AUC(y_true, y_pred):
- return roc_auc_score(y_true, y_pred)
-
- def MRR(y_true, y_pred):
- index = np.argsort(y_pred)[::-1]
- y_true = np.take(y_true, index)
- score = y_true / (np.arange(len(y_true)) + 1)
- return np.sum(score) / np.sum(y_true)
-
- def DCG(y_true, y_pred, n):
- index = np.argsort(y_pred)[::-1]
- y_true = np.take(y_true, index[:n])
- score = (2 ** y_true - 1) / np.log2(np.arange(len(y_true)) + 2)
- return np.sum(score)
-
- def nDCG(y_true, y_pred, n):
- return DCG(y_true, y_pred, n) / DCG(y_true, y_true, n)
-
- class NAMLMetric:
- """
- Metric method
- """
- def __init__(self):
- super(NAMLMetric, self).__init__()
- self.AUC_list = []
- self.MRR_list = []
- self.nDCG5_list = []
- self.nDCG10_list = []
-
- def clear(self):
- """Clear the internal evaluation result."""
- self.AUC_list = []
- self.MRR_list = []
- self.nDCG5_list = []
- self.nDCG10_list = []
-
- def update(self, predict, y_true):
- predict = predict.flatten()
- y_true = y_true.flatten()
- # predict = np.interp(predict, (predict.min(), predict.max()), (0, 1))
- self.AUC_list.append(AUC(y_true, predict))
- self.MRR_list.append(MRR(y_true, predict))
- self.nDCG5_list.append(nDCG(y_true, predict, 5))
- self.nDCG10_list.append(nDCG(y_true, predict, 10))
-
- def eval(self):
- auc = np.mean(self.AUC_list)
- print('AUC:', auc)
- print('MRR:', np.mean(self.MRR_list))
- print('nDCG@5:', np.mean(self.nDCG5_list))
- print('nDCG@10:', np.mean(self.nDCG10_list))
- return auc
-
- def get_metric(result_path, label_path, metric):
- """get accuracy"""
- result_files = os.listdir(result_path)
- for file in result_files:
- result_file = os.path.join(result_path, file)
- pred = np.fromfile(result_file, dtype=np.float32)
-
- label_file = os.path.join(label_path, file)
- label = np.fromfile(label_file, dtype=np.int32)
-
- if np.nan in pred:
- continue
- metric.update(pred, label)
-
- auc = metric.eval()
- return auc
-
- if __name__ == "__main__":
- naml_metric = NAMLMetric()
- get_metric(args.result_path, args.label_path, naml_metric)
|