You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import os
  17. import time
  18. import argparse
  19. import random
  20. import numpy as np
  21. from mindspore import context
  22. from mindspore import Tensor
  23. from mindspore import nn
  24. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  25. from mindspore.nn.optim.momentum import Momentum
  26. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  27. from mindspore.nn.loss.loss import _Loss
  28. from mindspore.ops import operations as P
  29. from mindspore.ops import functional as F
  30. from mindspore.common import dtype as mstype
  31. from mindspore.train.model import Model, ParallelMode
  32. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
  33. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  34. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  35. from mindspore.communication.management import init, get_group_size
  36. import mindspore.dataset.engine as de
  37. from src.dataset import create_dataset
  38. from src.lr_generator import get_lr
  39. from src.config import config_gpu, config_ascend
  40. from src.mobilenetV2 import mobilenet_v2
  41. random.seed(1)
  42. np.random.seed(1)
  43. de.config.set_seed(1)
  44. parser = argparse.ArgumentParser(description='Image classification')
  45. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  46. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  47. parser.add_argument('--platform', type=str, default=None, help='run platform')
  48. args_opt = parser.parse_args()
  49. if args_opt.platform == "Ascend":
  50. device_id = int(os.getenv('DEVICE_ID'))
  51. rank_id = int(os.getenv('RANK_ID'))
  52. rank_size = int(os.getenv('RANK_SIZE'))
  53. run_distribute = rank_size > 1
  54. device_id = int(os.getenv('DEVICE_ID'))
  55. context.set_context(mode=context.GRAPH_MODE,
  56. device_target="Ascend",
  57. device_id=device_id, save_graphs=False)
  58. elif args_opt.platform == "GPU":
  59. context.set_context(mode=context.GRAPH_MODE,
  60. device_target="GPU", save_graphs=False)
  61. else:
  62. raise ValueError("Unsupport platform.")
  63. class CrossEntropyWithLabelSmooth(_Loss):
  64. """
  65. CrossEntropyWith LabelSmooth.
  66. Args:
  67. smooth_factor (float): smooth factor, default=0.
  68. num_classes (int): num classes
  69. Returns:
  70. None.
  71. Examples:
  72. >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
  73. """
  74. def __init__(self, smooth_factor=0., num_classes=1000):
  75. super(CrossEntropyWithLabelSmooth, self).__init__()
  76. self.onehot = P.OneHot()
  77. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  78. self.off_value = Tensor(1.0 * smooth_factor /
  79. (num_classes - 1), mstype.float32)
  80. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  81. self.mean = P.ReduceMean(False)
  82. self.cast = P.Cast()
  83. def construct(self, logit, label):
  84. one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1],
  85. self.on_value, self.off_value)
  86. out_loss = self.ce(logit, one_hot_label)
  87. out_loss = self.mean(out_loss, 0)
  88. return out_loss
  89. class Monitor(Callback):
  90. """
  91. Monitor loss and time.
  92. Args:
  93. lr_init (numpy array): train lr
  94. Returns:
  95. None
  96. Examples:
  97. >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
  98. """
  99. def __init__(self, lr_init=None):
  100. super(Monitor, self).__init__()
  101. self.lr_init = lr_init
  102. self.lr_init_len = len(lr_init)
  103. def epoch_begin(self, run_context):
  104. self.losses = []
  105. self.epoch_time = time.time()
  106. def epoch_end(self, run_context):
  107. cb_params = run_context.original_args()
  108. epoch_mseconds = (time.time() - self.epoch_time) * 1000
  109. per_step_mseconds = epoch_mseconds / cb_params.batch_num
  110. print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
  111. per_step_mseconds,
  112. np.mean(self.losses)))
  113. def step_begin(self, run_context):
  114. self.step_time = time.time()
  115. def step_end(self, run_context):
  116. cb_params = run_context.original_args()
  117. step_mseconds = (time.time() - self.step_time) * 1000
  118. step_loss = cb_params.net_outputs
  119. if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
  120. step_loss = step_loss[0]
  121. if isinstance(step_loss, Tensor):
  122. step_loss = np.mean(step_loss.asnumpy())
  123. self.losses.append(step_loss)
  124. cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
  125. print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
  126. cb_params.cur_epoch_num -
  127. 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
  128. np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
  129. if __name__ == '__main__':
  130. if args_opt.platform == "GPU":
  131. # train on gpu
  132. print("train args: ", args_opt, "\ncfg: ", config_gpu)
  133. init('nccl')
  134. context.set_auto_parallel_context(parallel_mode="data_parallel",
  135. mirror_mean=True,
  136. device_num=get_group_size())
  137. # define net
  138. net = mobilenet_v2(num_classes=config_gpu.num_classes, platform="GPU")
  139. # define loss
  140. if config_gpu.label_smooth > 0:
  141. loss = CrossEntropyWithLabelSmooth(
  142. smooth_factor=config_gpu.label_smooth, num_classes=config_gpu.num_classes)
  143. else:
  144. loss = SoftmaxCrossEntropyWithLogits(
  145. is_grad=False, sparse=True, reduction='mean')
  146. # define dataset
  147. epoch_size = config_gpu.epoch_size
  148. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  149. do_train=True,
  150. config=config_gpu,
  151. platform=args_opt.platform,
  152. repeat_num=epoch_size,
  153. batch_size=config_gpu.batch_size)
  154. step_size = dataset.get_dataset_size()
  155. # resume
  156. if args_opt.pre_trained:
  157. param_dict = load_checkpoint(args_opt.pre_trained)
  158. load_param_into_net(net, param_dict)
  159. # define optimizer
  160. loss_scale = FixedLossScaleManager(
  161. config_gpu.loss_scale, drop_overflow_update=False)
  162. lr = Tensor(get_lr(global_step=0,
  163. lr_init=0,
  164. lr_end=0,
  165. lr_max=config_gpu.lr,
  166. warmup_epochs=config_gpu.warmup_epochs,
  167. total_epochs=epoch_size,
  168. steps_per_epoch=step_size))
  169. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_gpu.momentum,
  170. config_gpu.weight_decay, config_gpu.loss_scale)
  171. # define model
  172. model = Model(net, loss_fn=loss, optimizer=opt,
  173. loss_scale_manager=loss_scale)
  174. cb = [Monitor(lr_init=lr.asnumpy())]
  175. if config_gpu.save_checkpoint:
  176. config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
  177. keep_checkpoint_max=config_gpu.keep_checkpoint_max)
  178. ckpt_cb = ModelCheckpoint(
  179. prefix="mobilenetV2", directory=config_gpu.save_checkpoint_path, config=config_ck)
  180. cb += [ckpt_cb]
  181. # begine train
  182. model.train(epoch_size, dataset, callbacks=cb)
  183. elif args_opt.platform == "Ascend":
  184. # train on ascend
  185. print("train args: ", args_opt, "\ncfg: ", config_ascend,
  186. "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  187. if run_distribute:
  188. context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
  189. parameter_broadcast=True, mirror_mean=True)
  190. auto_parallel_context().set_all_reduce_fusion_split_indices([140])
  191. init()
  192. epoch_size = config_ascend.epoch_size
  193. net = mobilenet_v2(num_classes=config_ascend.num_classes, platform="Ascend")
  194. net.to_float(mstype.float16)
  195. for _, cell in net.cells_and_names():
  196. if isinstance(cell, nn.Dense):
  197. cell.to_float(mstype.float32)
  198. if config_ascend.label_smooth > 0:
  199. loss = CrossEntropyWithLabelSmooth(
  200. smooth_factor=config_ascend.label_smooth, num_classes=config_ascend.num_classes)
  201. else:
  202. loss = SoftmaxCrossEntropyWithLogits(
  203. is_grad=False, sparse=True, reduction='mean')
  204. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  205. do_train=True,
  206. config=config_ascend,
  207. platform=args_opt.platform,
  208. repeat_num=epoch_size,
  209. batch_size=config_ascend.batch_size)
  210. step_size = dataset.get_dataset_size()
  211. if args_opt.pre_trained:
  212. param_dict = load_checkpoint(args_opt.pre_trained)
  213. load_param_into_net(net, param_dict)
  214. loss_scale = FixedLossScaleManager(
  215. config_ascend.loss_scale, drop_overflow_update=False)
  216. lr = Tensor(get_lr(global_step=0,
  217. lr_init=0,
  218. lr_end=0,
  219. lr_max=config_ascend.lr,
  220. warmup_epochs=config_ascend.warmup_epochs,
  221. total_epochs=epoch_size,
  222. steps_per_epoch=step_size))
  223. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum,
  224. config_ascend.weight_decay, config_ascend.loss_scale)
  225. model = Model(net, loss_fn=loss, optimizer=opt,
  226. loss_scale_manager=loss_scale)
  227. cb = None
  228. if rank_id == 0:
  229. cb = [Monitor(lr_init=lr.asnumpy())]
  230. if config_ascend.save_checkpoint:
  231. config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
  232. keep_checkpoint_max=config_ascend.keep_checkpoint_max)
  233. ckpt_cb = ModelCheckpoint(
  234. prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck)
  235. cb += [ckpt_cb]
  236. model.train(epoch_size, dataset, callbacks=cb)
  237. else:
  238. raise ValueError("Unsupport platform.")