You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops_prelu.cc 3.5 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <vector>
  17. #include <memory>
  18. #include "common/common_test.h"
  19. #include "ops/prelu.h"
  20. #include "ir/dtype/type.h"
  21. #include "ir/value.h"
  22. #include "abstract/dshape.h"
  23. #include "utils/tensor_construct_utils.h"
  24. namespace mindspore {
  25. namespace ops {
  26. class TestPReLU : public UT::Common {
  27. public:
  28. TestPReLU() {}
  29. void SetUp() {}
  30. void TearDown() {}
  31. };
  32. TEST_F(TestPReLU, test_ops_prelu1) {
  33. auto prelu = std::make_shared<PReLU>();
  34. auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{2, 3, 4});
  35. auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3});
  36. MS_EXCEPTION_IF_NULL(tensor_x);
  37. MS_EXCEPTION_IF_NULL(tensor_w);
  38. auto abstract = prelu->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
  39. MS_EXCEPTION_IF_NULL(abstract);
  40. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  41. auto shape_ptr = abstract->BuildShape();
  42. MS_EXCEPTION_IF_NULL(shape_ptr);
  43. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  44. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  45. MS_EXCEPTION_IF_NULL(shape);
  46. auto shape_vec = shape->shape();
  47. auto type = abstract->BuildType();
  48. MS_EXCEPTION_IF_NULL(type);
  49. EXPECT_EQ(type->isa<TensorType>(), true);
  50. auto tensor_type = type->cast<TensorTypePtr>();
  51. MS_EXCEPTION_IF_NULL(tensor_type);
  52. auto data_type = tensor_type->element();
  53. MS_EXCEPTION_IF_NULL(data_type);
  54. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
  55. EXPECT_EQ(shape_vec.size(), 3);
  56. EXPECT_EQ(shape_vec[0], 2);
  57. EXPECT_EQ(shape_vec[1], 3);
  58. EXPECT_EQ(shape_vec[2], 4);
  59. }
  60. TEST_F(TestPReLU, test_ops_prelu2) {
  61. auto prelu = std::make_shared<PReLU>();
  62. auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{5, 6, 7, 8});
  63. auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{1});
  64. MS_EXCEPTION_IF_NULL(tensor_x);
  65. MS_EXCEPTION_IF_NULL(tensor_w);
  66. auto abstract = prelu->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
  67. MS_EXCEPTION_IF_NULL(abstract);
  68. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  69. auto shape_ptr = abstract->BuildShape();
  70. MS_EXCEPTION_IF_NULL(shape_ptr);
  71. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  72. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  73. MS_EXCEPTION_IF_NULL(shape);
  74. auto shape_vec = shape->shape();
  75. auto type = abstract->BuildType();
  76. MS_EXCEPTION_IF_NULL(type);
  77. EXPECT_EQ(type->isa<TensorType>(), true);
  78. auto tensor_type = type->cast<TensorTypePtr>();
  79. MS_EXCEPTION_IF_NULL(tensor_type);
  80. auto data_type = tensor_type->element();
  81. MS_EXCEPTION_IF_NULL(data_type);
  82. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
  83. EXPECT_EQ(shape_vec.size(), 4);
  84. EXPECT_EQ(shape_vec[0], 5);
  85. EXPECT_EQ(shape_vec[1], 6);
  86. EXPECT_EQ(shape_vec[2], 7);
  87. EXPECT_EQ(shape_vec[3], 8);
  88. }
  89. } // namespace ops
  90. } // namespace mindspore