You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.6 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """FastText for train"""
  16. import os
  17. import time
  18. import argparse
  19. import ast
  20. from mindspore import context
  21. from mindspore.nn.optim import Adam
  22. from mindspore.common import set_seed
  23. from mindspore.train.model import Model
  24. import mindspore.common.dtype as mstype
  25. from mindspore.common.tensor import Tensor
  26. from mindspore.context import ParallelMode
  27. from mindspore.train.callback import Callback, TimeMonitor
  28. from mindspore.communication import management as MultiDevice
  29. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
  30. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  31. from src.load_dataset import load_dataset
  32. from src.lr_schedule import polynomial_decay_scheduler
  33. from src.fasttext_train import FastTextTrainOneStepCell, FastTextNetWithLoss
  34. parser = argparse.ArgumentParser()
  35. parser.add_argument('--data_path', type=str, required=True, help='FastText input data file path.')
  36. parser.add_argument('--data_name', type=str, required=True, default='ag', help='dataset name. eg. ag, dbpedia')
  37. parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
  38. help='device where the code will be implemented (default: Ascend)')
  39. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute, default: false.')
  40. args = parser.parse_args()
  41. if args.data_name == "ag":
  42. from src.config import config_ag as config_ascend
  43. from src.config import config_ag_gpu as config_gpu
  44. elif args.data_name == 'dbpedia':
  45. from src.config import config_db as config_ascend
  46. from src.config import config_db_gpu as config_gpu
  47. elif args.data_name == 'yelp_p':
  48. from src.config import config_yelpp as config_ascend
  49. from src.config import config_yelpp_gpu as config_gpu
  50. def get_ms_timestamp():
  51. t = time.time()
  52. return int(round(t * 1000))
  53. set_seed(5)
  54. time_stamp_init = False
  55. time_stamp_first = 0
  56. rank_id = os.getenv('DEVICE_ID')
  57. context.set_context(
  58. mode=context.GRAPH_MODE,
  59. save_graphs=False,
  60. device_target=args.device_target)
  61. config = config_ascend if args.device_target == 'Ascend' else config_gpu
  62. class LossCallBack(Callback):
  63. """
  64. Monitor the loss in training.
  65. If the loss is NAN or INF terminating training.
  66. Note:
  67. If per_print_times is 0 do not print loss.
  68. Args:
  69. per_print_times (int): Print loss every times. Default: 1.
  70. """
  71. def __init__(self, per_print_times=1, rank_ids=0):
  72. super(LossCallBack, self).__init__()
  73. if not isinstance(per_print_times, int) or per_print_times < 0:
  74. raise ValueError("print_step must be int and >= 0.")
  75. self._per_print_times = per_print_times
  76. self.rank_id = rank_ids
  77. global time_stamp_init, time_stamp_first
  78. if not time_stamp_init:
  79. time_stamp_first = get_ms_timestamp()
  80. time_stamp_init = True
  81. def step_end(self, run_context):
  82. """Monitor the loss in training."""
  83. global time_stamp_first
  84. time_stamp_current = get_ms_timestamp()
  85. cb_params = run_context.original_args()
  86. print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
  87. cb_params.cur_epoch_num,
  88. cb_params.cur_step_num,
  89. str(cb_params.net_outputs)))
  90. with open("./loss_{}.log".format(self.rank_id), "a+") as f:
  91. f.write("time: {}, epoch: {}, step: {}, loss: {}".format(
  92. time_stamp_current - time_stamp_first,
  93. cb_params.cur_epoch_num,
  94. cb_params.cur_step_num,
  95. str(cb_params.net_outputs.asnumpy())))
  96. f.write('\n')
  97. def _build_training_pipeline(pre_dataset, run_distribute=False):
  98. """
  99. Build training pipeline
  100. Args:
  101. pre_dataset: preprocessed dataset
  102. """
  103. net_with_loss = FastTextNetWithLoss(config.vocab_size, config.embedding_dims, config.num_class)
  104. net_with_loss.init_parameters_data()
  105. if config.pretrain_ckpt_dir:
  106. parameter_dict = load_checkpoint(config.pretrain_ckpt_dir)
  107. load_param_into_net(net_with_loss, parameter_dict)
  108. if pre_dataset is None:
  109. raise ValueError("pre-process dataset must be provided")
  110. #get learning rate
  111. update_steps = config.epoch * pre_dataset.get_dataset_size()
  112. decay_steps = pre_dataset.get_dataset_size()
  113. rank_size = os.getenv("RANK_SIZE")
  114. if isinstance(rank_size, int):
  115. raise ValueError("RANK_SIZE must be integer")
  116. if rank_size is not None and int(rank_size) > 1:
  117. base_lr = config.lr
  118. else:
  119. base_lr = config.lr / 10
  120. print("+++++++++++Total update steps ", update_steps)
  121. lr = Tensor(polynomial_decay_scheduler(lr=base_lr,
  122. min_lr=config.min_lr,
  123. decay_steps=decay_steps,
  124. total_update_num=update_steps,
  125. warmup_steps=config.warmup_steps,
  126. power=config.poly_lr_scheduler_power), dtype=mstype.float32)
  127. optimizer = Adam(net_with_loss.trainable_params(), lr, beta1=0.9, beta2=0.999)
  128. net_with_grads = FastTextTrainOneStepCell(net_with_loss, optimizer=optimizer)
  129. net_with_grads.set_train(True)
  130. model = Model(net_with_grads)
  131. loss_monitor = LossCallBack(rank_ids=rank_id)
  132. dataset_size = pre_dataset.get_dataset_size()
  133. time_monitor = TimeMonitor(data_size=dataset_size)
  134. ckpt_config = CheckpointConfig(save_checkpoint_steps=decay_steps * config.epoch,
  135. keep_checkpoint_max=config.keep_ckpt_max)
  136. callbacks = [time_monitor, loss_monitor]
  137. if not run_distribute:
  138. ckpt_callback = ModelCheckpoint(prefix='fasttext',
  139. directory=os.path.join('./', 'ckpt_{}'.format(os.getenv("DEVICE_ID"))),
  140. config=ckpt_config)
  141. callbacks.append(ckpt_callback)
  142. if run_distribute and MultiDevice.get_rank() % 8 == 0:
  143. ckpt_callback = ModelCheckpoint(prefix='fasttext',
  144. directory=os.path.join('./', 'ckpt_{}'.format(os.getenv("DEVICE_ID"))),
  145. config=ckpt_config)
  146. callbacks.append(ckpt_callback)
  147. print("Prepare to Training....")
  148. epoch_size = pre_dataset.get_repeat_count()
  149. print("Epoch size ", epoch_size)
  150. if run_distribute:
  151. print(f" | Rank {MultiDevice.get_rank()} Call model train.")
  152. model.train(epoch=config.epoch, train_dataset=pre_dataset, callbacks=callbacks, dataset_sink_mode=False)
  153. def train_single(input_file_path):
  154. """
  155. Train model on single device
  156. Args:
  157. input_file_path: preprocessed dataset path
  158. """
  159. print("Staring training on single device.")
  160. preprocessed_data = load_dataset(dataset_path=input_file_path,
  161. batch_size=config.batch_size,
  162. epoch_count=config.epoch_count,
  163. bucket=config.buckets)
  164. _build_training_pipeline(preprocessed_data)
  165. def set_parallel_env():
  166. context.reset_auto_parallel_context()
  167. MultiDevice.init()
  168. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
  169. device_num=MultiDevice.get_group_size(),
  170. gradients_mean=True)
  171. def train_paralle(input_file_path):
  172. """
  173. Train model on multi device
  174. Args:
  175. input_file_path: preprocessed dataset path
  176. """
  177. set_parallel_env()
  178. print("Starting traning on multiple devices. |~ _ ~| |~ _ ~| |~ _ ~| |~ _ ~|")
  179. batch_size = config.batch_size
  180. if args.device_target == 'GPU':
  181. batch_size = config.distribute_batch_size
  182. preprocessed_data = load_dataset(dataset_path=input_file_path,
  183. batch_size=batch_size,
  184. epoch_count=config.epoch_count,
  185. rank_size=MultiDevice.get_group_size(),
  186. rank_id=MultiDevice.get_rank(),
  187. bucket=config.buckets,
  188. shuffle=False)
  189. _build_training_pipeline(preprocessed_data, True)
  190. if __name__ == "__main__":
  191. if args.run_distribute:
  192. train_paralle(args.data_path)
  193. else:
  194. train_single(args.data_path)