You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.4 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export ckpt to model"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import context, Tensor
  19. from mindspore.train.serialization import export, load_checkpoint
  20. from src.autodis import ModelBuilder
  21. from src.config import DataConfig, ModelConfig, TrainConfig
  22. parser = argparse.ArgumentParser(description="autodis export")
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--batch_size", type=int, default=16000, help="batch size")
  25. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  26. parser.add_argument("--file_name", type=str, default="autodis", help="output file name.")
  27. parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
  28. parser.add_argument("--device_target", type=str, choices=["Ascend"], default="Ascend",
  29. help="device target")
  30. args = parser.parse_args()
  31. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
  32. if __name__ == "__main__":
  33. data_config = DataConfig()
  34. model_builder = ModelBuilder(ModelConfig, TrainConfig)
  35. _, network = model_builder.get_train_eval_net()
  36. network.set_train(False)
  37. load_checkpoint(args.ckpt_file, net=network)
  38. batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32))
  39. batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32))
  40. labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32))
  41. input_data = [batch_ids, batch_wts, labels]
  42. export(network, *input_data, file_name=args.file_name, file_format=args.file_format)