|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # GOMO Example
-
- - [Description](#Description)
- - [Model Architecture](#Model-Architecture)
- - [Dataset](#Dataset)
- - [Environment Requirements](#Environment-Requirements)
- - [Quick Start](#Quick-Start)
- - [Script Description](#Script-Description)
- - [Script and Sample Code](#Script-and-Sample-Code)
- - [Training Process](#Training-Process)
- - [Model Description](#Model-Description)
- - [Evaluation Performance](#Evaluation-Performance)
- - [Description of Random Situation](#Description-of-Random-Situation)
- - [ModelZoo Homepage](#ModelZoo-Homepage)
-
- ## Description
-
- Generalized Operator Modelling of the Ocean (GOMO) is a three-dimensional ocean model based on OpenArray which is a simple operator library for the decoupling of ocean modelling and parallel computing (Xiaomeng Huang et al, 2019). GOMO is a numerical solution model using finite differential algorithm to solve PDE equations. With MindSpore and GPU, we can achieve great improvements in solving those PDE equations compared with CPU.
- This is an example of training GOMO Model with MindSpore on GPU.
-
- ## Model Architecture
-
- The overall model architecture of GOMO is show below:[link](https://gmd.copernicus.org/articles/12/4729/2019/gmd-12-4729-2019-discussion.html). The fundamental equations and algorithms of GOMO can also be found in this article
-
- ## Dataset
-
- Dataset used: Seamount
-
- - Dataset size: 65x49x21
-
- - Data format:nc
-
- - Download the dataset
-
- > download the GOMO from Github and you can find the seamount dataset file in the `GOMO/bin/data` directory.
-
- ## Environment Requirements
-
- - Hardware: GPU
- - Prepare hardware environment with GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## Quick Start
-
- After installing MindSpore via the official website, you can start training as follows:
-
- ```shell
- # run distributed training example
- sh run_distribute_train.sh [im] [jm] [kb] [step] [DATASET_PATH]
- ```
-
- ## Script Description
-
- ### Script and Sample Code
-
- ```shell
- └── ocean_model
- ├── README.md # descriptions about ocean model GOMO
- ├── scripts
- │ ├── run_distribute_train.sh # launch distributed training for GPU
- ├──src
- │ ├── GOMO.py # GOMO model
- │ ├── Grid.py # grid initial
- │ ├── stencil.py # averaging and differential stencil oprator
- │ ├── op_operator.py # averaging and differential kernel operator
- │ ├── read_var.py # read variables from nc file
- ├── train.py # train script
- ```
-
- ### Training Process
-
- ```shell
- sh run_distribute_train.sh [im] [jm] [kb] [step] [DATASET_PATH]
- ```
-
- Training result will be stored in the current path, whose folder name begins with "train".
-
- ## Model Description
-
- ### Evaluation Performance
-
- | Parameters | GPU |
- | -------------------------- |---------------------------------- |
- | Resource | GPU(Tesla V100 SXM2),Memory 16G
- | uploaded Date |
- | MindSpore Version |
- | Dataset | Seamount
- | Training Parameters | step=10, im=65, km=49, kb=21
- | Outputs | numpy file
- | Speed | 17 ms/step
- | Total time | 3 mins
- | Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/hpc/ocean_model)
-
- ## Description of Random Situation
-
- ## ModelZoo HomePage
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|