|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Inference Interface"""
- import sys
- import os
- import argparse
-
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
- from mindspore import context
-
- from src.dataset import create_dataset_val
- from src.utils import count_params
- from src.loss import LabelSmoothingCrossEntropy
- from src.tinynet import tinynet
-
- parser = argparse.ArgumentParser(description='Evaluation')
- parser.add_argument('--data_path', type=str, default='/home/dataset/imagenet_jpeg/',
- metavar='DIR', help='path to dataset')
- parser.add_argument('--model', default='tinynet_c', type=str, metavar='MODEL',
- help='Name of model to train (default: "tinynet_c"')
- parser.add_argument('--num-classes', type=int, default=1000, metavar='N',
- help='number of label classes (default: 1000)')
- parser.add_argument('--smoothing', type=float, default=0.1,
- help='label smoothing (default: 0.1)')
- parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
- help='input batch size for training (default: 32)')
- parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
- help='how many training processes to use (default: 1)')
- parser.add_argument('--ckpt', type=str, default=None,
- help='model checkpoint to load')
- parser.add_argument('--GPU', action='store_true', default=True,
- help='Use GPU for training (default: True)')
- parser.add_argument('--dataset_sink', action='store_true', default=True)
-
-
- def main():
- """Main entrance for training"""
- args = parser.parse_args()
- print(sys.argv)
-
- context.set_context(mode=context.GRAPH_MODE)
-
- if args.GPU:
- context.set_context(device_target='GPU')
-
- # parse model argument
- assert args.model.startswith(
- "tinynet"), "Only Tinynet models are supported."
- _, sub_name = args.model.split("_")
- net = tinynet(sub_model=sub_name,
- num_classes=args.num_classes,
- drop_rate=0.0,
- drop_connect_rate=0.0,
- global_pool="avg",
- bn_tf=False,
- bn_momentum=None,
- bn_eps=None)
- print("Total number of parameters:", count_params(net))
-
- input_size = net.default_cfg['input_size'][1]
- val_data_url = os.path.join(args.data_path, 'val')
- val_dataset = create_dataset_val(args.batch_size,
- val_data_url,
- workers=args.workers,
- distributed=False,
- input_size=input_size)
-
- loss = LabelSmoothingCrossEntropy(smooth_factor=args.smoothing,
- num_classes=args.num_classes)
-
- loss.add_flags_recursive(fp32=True, fp16=False)
- eval_metrics = {'Validation-Loss': Loss(),
- 'Top1-Acc': Top1CategoricalAccuracy(),
- 'Top5-Acc': Top5CategoricalAccuracy()}
-
- ckpt = load_checkpoint(args.ckpt)
- load_param_into_net(net, ckpt)
- net.set_train(False)
-
- model = Model(net, loss, metrics=eval_metrics)
-
- metrics = model.eval(val_dataset, dataset_sink_mode=False)
- print(metrics)
-
-
- if __name__ == '__main__':
- main()
|