You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 11 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. Train CenterNet and get network model files(.ckpt)
  17. """
  18. import os
  19. import argparse
  20. import mindspore.communication.management as D
  21. from mindspore.communication.management import get_rank
  22. from mindspore import context
  23. from mindspore.train.model import Model
  24. from mindspore.context import ParallelMode
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.nn.optim import Adam
  28. from mindspore import log as logger
  29. from mindspore.common import set_seed
  30. from mindspore.profiler import Profiler
  31. from src.dataset import COCOHP
  32. from src.centernet_det import CenterNetLossCell, CenterNetWithLossScaleCell
  33. from src.centernet_det import CenterNetWithoutLossScaleCell
  34. from src.utils import LossCallBack, CenterNetPolynomialDecayLR, CenterNetMultiEpochsDecayLR
  35. from src.config import dataset_config, net_config, train_config
  36. _current_dir = os.path.dirname(os.path.realpath(__file__))
  37. parser = argparse.ArgumentParser(description='CenterNet training')
  38. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
  39. help='device where the code will be implemented. (Default: Ascend)')
  40. parser.add_argument("--distribute", type=str, default="true", choices=["true", "false"],
  41. help="Run distribute, default is true.")
  42. parser.add_argument("--need_profiler", type=str, default="false", choices=["true", "false"],
  43. help="Profiling to parsing runtime info, default is false.")
  44. parser.add_argument("--profiler_path", type=str, default=" ", help="The path to save profiling data")
  45. parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
  46. parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1,"
  47. "i.e. run all steps according to epoch number.")
  48. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  49. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  50. parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
  51. help="Enable save checkpoint, default is true.")
  52. parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
  53. help="Enable shuffle for dataset, default is true.")
  54. parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
  55. help="Enable data sink, default is true.")
  56. parser.add_argument("--data_sink_steps", type=int, default="-1", help="Sink steps for each epoch, default is -1.")
  57. parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
  58. parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  59. parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
  60. parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
  61. parser.add_argument("--mindrecord_dir", type=str, default="", help="Mindrecord dataset files directory")
  62. parser.add_argument("--mindrecord_prefix", type=str, default="coco_det.train.mind",
  63. help="Prefix of MindRecord dataset filename.")
  64. parser.add_argument("--save_result_dir", type=str, default="", help="The path to save the predict results")
  65. args_opt = parser.parse_args()
  66. def _set_parallel_all_reduce_split():
  67. """set centernet all_reduce fusion split"""
  68. if net_config.last_level == 5:
  69. context.set_auto_parallel_context(all_reduce_fusion_config=[16, 56, 96, 136, 175])
  70. elif net_config.last_level == 6:
  71. context.set_auto_parallel_context(all_reduce_fusion_config=[18, 59, 100, 141, 182])
  72. else:
  73. raise ValueError("The total num of allreduced grads for last level = {} is unknown,"
  74. "please re-split after known the true value".format(net_config.last_level))
  75. def _get_params_groups(network, optimizer):
  76. """
  77. Get param groups
  78. """
  79. params = network.trainable_params()
  80. decay_params = list(filter(lambda x: not optimizer.decay_filter(x), params))
  81. other_params = list(filter(optimizer.decay_filter, params))
  82. group_params = [{'params': decay_params, 'weight_decay': optimizer.weight_decay},
  83. {'params': other_params, 'weight_decay': 0.0},
  84. {'order_params': params}]
  85. return group_params
  86. def _get_optimizer(network, dataset_size):
  87. """get optimizer, only support Adam right now."""
  88. if train_config.optimizer == 'Adam':
  89. group_params = _get_params_groups(network, train_config.Adam)
  90. if train_config.lr_schedule == "PolyDecay":
  91. lr_schedule = CenterNetPolynomialDecayLR(learning_rate=train_config.PolyDecay.learning_rate,
  92. end_learning_rate=train_config.PolyDecay.end_learning_rate,
  93. warmup_steps=train_config.PolyDecay.warmup_steps,
  94. decay_steps=args_opt.train_steps,
  95. power=train_config.PolyDecay.power)
  96. optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.PolyDecay.eps, loss_scale=1.0)
  97. elif train_config.lr_schedule == "MultiDecay":
  98. multi_epochs = train_config.MultiDecay.multi_epochs
  99. if not isinstance(multi_epochs, (list, tuple)):
  100. raise TypeError("multi_epochs must be list or tuple.")
  101. if not multi_epochs:
  102. multi_epochs = [args_opt.epoch_size]
  103. lr_schedule = CenterNetMultiEpochsDecayLR(learning_rate=train_config.MultiDecay.learning_rate,
  104. warmup_steps=train_config.MultiDecay.warmup_steps,
  105. multi_epochs=multi_epochs,
  106. steps_per_epoch=dataset_size,
  107. factor=train_config.MultiDecay.factor)
  108. optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.MultiDecay.eps, loss_scale=1.0)
  109. else:
  110. raise ValueError("Don't support lr_schedule {}, only support [PolynormialDecay, MultiEpochDecay]".
  111. format(train_config.optimizer))
  112. else:
  113. raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, Adam]".
  114. format(train_config.optimizer))
  115. return optimizer
  116. def train():
  117. """training CenterNet"""
  118. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
  119. context.set_context(reserve_class_name_in_scope=False)
  120. context.set_context(save_graphs=False)
  121. ckpt_save_dir = args_opt.save_checkpoint_path
  122. rank = 0
  123. device_num = 1
  124. num_workers = 8
  125. if args_opt.device_target == "Ascend":
  126. context.set_context(enable_auto_mixed_precision=False)
  127. context.set_context(device_id=args_opt.device_id)
  128. if args_opt.distribute == "true":
  129. D.init()
  130. device_num = args_opt.device_num
  131. rank = args_opt.device_id % device_num
  132. ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
  133. context.reset_auto_parallel_context()
  134. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
  135. device_num=device_num)
  136. _set_parallel_all_reduce_split()
  137. else:
  138. args_opt.distribute = "false"
  139. args_opt.need_profiler = "false"
  140. args_opt.enable_data_sink = "false"
  141. # Start create dataset!
  142. # mindrecord files will be generated at args_opt.mindrecord_dir such as centernet.mindrecord0, 1, ... file_num.
  143. logger.info("Begin creating dataset for CenterNet")
  144. coco = COCOHP(dataset_config, run_mode="train", net_opt=net_config, save_path=args_opt.save_result_dir)
  145. dataset = coco.create_train_dataset(args_opt.mindrecord_dir, args_opt.mindrecord_prefix,
  146. batch_size=train_config.batch_size, device_num=device_num, rank=rank,
  147. num_parallel_workers=num_workers, do_shuffle=args_opt.do_shuffle == 'true')
  148. dataset_size = dataset.get_dataset_size()
  149. logger.info("Create dataset done!")
  150. net_with_loss = CenterNetLossCell(net_config)
  151. args_opt.train_steps = args_opt.epoch_size * dataset_size
  152. logger.info("train steps: {}".format(args_opt.train_steps))
  153. optimizer = _get_optimizer(net_with_loss, dataset_size)
  154. enable_static_time = args_opt.device_target == "CPU"
  155. callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(dataset_size, enable_static_time)]
  156. if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
  157. config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
  158. keep_checkpoint_max=args_opt.save_checkpoint_num)
  159. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_centernet',
  160. directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
  161. callback.append(ckpoint_cb)
  162. if args_opt.load_checkpoint_path:
  163. param_dict = load_checkpoint(args_opt.load_checkpoint_path)
  164. load_param_into_net(net_with_loss, param_dict)
  165. if args_opt.device_target == "Ascend":
  166. net_with_grads = CenterNetWithLossScaleCell(net_with_loss, optimizer=optimizer,
  167. sens=train_config.loss_scale_value)
  168. else:
  169. net_with_grads = CenterNetWithoutLossScaleCell(net_with_loss, optimizer=optimizer)
  170. model = Model(net_with_grads)
  171. model.train(args_opt.epoch_size, dataset, callbacks=callback,
  172. dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
  173. if __name__ == '__main__':
  174. if args_opt.need_profiler == "true":
  175. profiler = Profiler(output_path=args_opt.profiler_path)
  176. set_seed(317)
  177. train()
  178. if args_opt.need_profiler == "true":
  179. profiler.analyse()