You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 3.7 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import sys
  17. import argparse
  18. import random
  19. import pickle
  20. import numpy as np
  21. from train_dataset import create_dataset
  22. from config import config
  23. from mindspore import context
  24. from mindspore.nn.dynamic_lr import piecewise_constant_lr, warmup_lr
  25. from mindspore.train.model import Model
  26. from mindspore.train.serialization import load_param_into_net
  27. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor # TimeMonitor
  28. import mindspore.dataset.engine as de
  29. from mindspore.nn.metrics import Accuracy
  30. from model.model import resnet50, NetWithLossClass, TrainStepWrap, TestStepWrap
  31. random.seed(1)
  32. np.random.seed(1)
  33. de.config.set_seed(1)
  34. parser = argparse.ArgumentParser(description='Image classification')
  35. parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
  36. parser.add_argument('--train_url', type=str, default=None, help='Train output path')
  37. args_opt = parser.parse_args()
  38. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
  39. local_data_url = 'data'
  40. local_train_url = 'ckpt'
  41. class Logger():
  42. '''Logger'''
  43. def __init__(self, logFile="log_max.txt"):
  44. self.terminal = sys.stdout
  45. self.log = open(logFile, 'a')
  46. def write(self, message):
  47. self.terminal.write(message)
  48. self.log.write(message)
  49. self.log.flush()
  50. def flush(self):
  51. pass
  52. sys.stdout = Logger("log/log.txt")
  53. if __name__ == '__main__':
  54. epoch_size = config.epoch_size
  55. net = resnet50(class_num=config.class_num, is_train=True)
  56. loss_net = NetWithLossClass(net)
  57. dataset = create_dataset("/home/dingfeifei/datasets/faces_webface_112x112_raw_image", \
  58. p=config.p, k=config.k)
  59. step_size = dataset.get_dataset_size()
  60. base_lr = config.learning_rate
  61. warm_up_epochs = config.lr_warmup_epochs
  62. lr_decay_epochs = config.lr_decay_epochs
  63. lr_decay_factor = config.lr_decay_factor
  64. lr_decay_steps = []
  65. lr_decay = []
  66. for i, v in enumerate(lr_decay_epochs):
  67. lr_decay_steps.append(v * step_size)
  68. lr_decay.append(base_lr * lr_decay_factor ** i)
  69. lr_1 = warmup_lr(base_lr, step_size*warm_up_epochs, step_size, warm_up_epochs)
  70. lr_2 = piecewise_constant_lr(lr_decay_steps, lr_decay)
  71. lr = lr_1 + lr_2
  72. train_net = TrainStepWrap(loss_net, lr, config.momentum)
  73. test_net = TestStepWrap(net)
  74. f = open("checkpoints/pretrained_resnet50.pkl", "rb")
  75. param_dict = pickle.load(f)
  76. load_param_into_net(net=train_net, parameter_dict=param_dict)
  77. model = Model(train_net, eval_network=test_net, metrics={"Accuracy": Accuracy()})
  78. loss_cb = LossMonitor()
  79. cb = [loss_cb]
  80. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, \
  81. keep_checkpoint_max=config.keep_checkpoint_max)
  82. ckpt_cb = ModelCheckpoint(prefix="resnet", directory='checkpoints/', \
  83. config=config_ck)
  84. cb += [ckpt_cb]
  85. model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)