You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Contents
  2. - [HourNAS Description](#tinynet-description)
  3. - [Model Architecture](#model-architecture)
  4. - [Dataset](#dataset)
  5. - [Environment Requirements](#environment-requirements)
  6. - [Script Description](#script-description)
  7. - [Script and Sample Code](#script-and-sample-code)
  8. - [Training Process](#training-process)
  9. - [Evaluation Process](#evaluation-process)
  10. - [Model Description](#model-description)
  11. - [Performance](#performance)
  12. - [Evaluation Performance](#evaluation-performance)
  13. - [Description of Random Situation](#description-of-random-situation)
  14. - [ModelZoo Homepage](#modelzoo-homepage)
  15. # [HourNAS Description](#contents)
  16. HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods.
  17. [Paper](https://arxiv.org/abs/2005.14446): Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021.
  18. # [Model architecture](#contents)
  19. The overall network architecture of HourNAS is show below:
  20. [Link](https://arxiv.org/abs/2005.14446)
  21. # [Dataset](#contents)
  22. Dataset used: [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html)
  23. - Dataset size:175M,60,000 32*32 colorful images in 10 classes
  24. - Train:146M,50,000 images
  25. - Test:29M,10,000 images
  26. - Data format:binary files
  27. - Note:Data will be processed in src/dataset.py
  28. # [Environment Requirements](#contents)
  29. - Hardware (GPU)
  30. - Framework
  31. - [MindSpore](https://www.mindspore.cn/install/en)
  32. - For more information, please check the resources below:
  33. - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
  34. - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
  35. # [Script Description](#contents)
  36. ## [Script and Sample Code](#contents)
  37. ```markdown
  38. .HourNAS
  39. ├── README.md # descriptions about HourNAS
  40. ├── src
  41. │ ├── architectures.py # definition of HourNAS-F model
  42. │ ├── dataset.py # data preprocessing
  43. │ ├── hournasnet.py # HourNAS general architecture
  44. │ └── utils.py # utility functions
  45. ├── eval.py # evaluation interface
  46. ```
  47. ### [Training process](#contents)
  48. To Be Done
  49. ### [Evaluation Process](#contents)
  50. #### Launch
  51. ```bash
  52. # infer example
  53. python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH]
  54. ```
  55. ### Result
  56. ```bash
  57. result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt
  58. ```
  59. # [Model Description](#contents)
  60. ## [Performance](#contents)
  61. ### Evaluation Performance
  62. | Model | FLOPs (M) | Params (M) | ImageNet Top-1 |
  63. | --------------- | --------- | ---------- | -------------- |
  64. | MnasNet-A1 | 312 | 3.9 | 75.2% |
  65. | HourNAS-E | 313 | 3.8 | 75.7% |
  66. | EfficientNet-B0 | 390 | 5.3 | 76.8% |
  67. | HourNAS-F | 383 | 5.3 | 77.0% |
  68. More details in [Paper](https://arxiv.org/abs/2005.14446).
  69. # [Description of Random Situation](#contents)
  70. We set the seed inside dataset.py.
  71. # [ModelZoo Homepage](#contents)
  72. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).