|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Contents
-
- - [HourNAS Description](#tinynet-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [HourNAS Description](#contents)
-
- HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods.
-
- [Paper](https://arxiv.org/abs/2005.14446): Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021.
-
- # [Model architecture](#contents)
-
- The overall network architecture of HourNAS is show below:
-
- [Link](https://arxiv.org/abs/2005.14446)
-
- # [Dataset](#contents)
-
- Dataset used: [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html)
-
- - Dataset size:175M,60,000 32*32 colorful images in 10 classes
- - Train:146M,50,000 images
- - Test:29M,10,000 images
- - Data format:binary files
- - Note:Data will be processed in src/dataset.py
-
- # [Environment Requirements](#contents)
-
- - Hardware (GPU)
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```markdown
- .HourNAS
- ├── README.md # descriptions about HourNAS
- ├── src
- │ ├── architectures.py # definition of HourNAS-F model
- │ ├── dataset.py # data preprocessing
- │ ├── hournasnet.py # HourNAS general architecture
- │ └── utils.py # utility functions
- ├── eval.py # evaluation interface
- ```
-
- ### [Training process](#contents)
-
- To Be Done
-
- ### [Evaluation Process](#contents)
-
- #### Launch
-
- ```bash
- # infer example
-
- python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH]
- ```
-
- ### Result
-
- ```bash
- result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt
- ```
-
- # [Model Description](#contents)
-
- ## [Performance](#contents)
-
- ### Evaluation Performance
-
- | Model | FLOPs (M) | Params (M) | ImageNet Top-1 |
- | --------------- | --------- | ---------- | -------------- |
- | MnasNet-A1 | 312 | 3.9 | 75.2% |
- | HourNAS-E | 313 | 3.8 | 75.7% |
- | EfficientNet-B0 | 390 | 5.3 | 76.8% |
- | HourNAS-F | 383 | 5.3 | 77.0% |
-
- More details in [Paper](https://arxiv.org/abs/2005.14446).
-
- # [Description of Random Situation](#contents)
-
- We set the seed inside dataset.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|