|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export ckpt to model"""
- import argparse
- import numpy as np
-
- from mindspore import context, Tensor
- from mindspore.train.serialization import export, load_checkpoint
-
- from src.deepfm import ModelBuilder
- from src.config import DataConfig, ModelConfig, TrainConfig
-
- parser = argparse.ArgumentParser(description="deepfm export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--batch_size", type=int, default=16000, help="batch size")
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--file_name", type=str, default="deepfm", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == "__main__":
- data_config = DataConfig()
-
- model_builder = ModelBuilder(ModelConfig, TrainConfig)
- _, network = model_builder.get_train_eval_net()
- network.set_train(False)
-
- load_checkpoint(args.ckpt_file, net=network)
-
- batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32))
- batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32))
- labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32))
-
- input_data = [batch_ids, batch_wts, labels]
- export(network, *input_data, file_name=args.file_name, file_format=args.file_format)
|