|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for SSD"""
-
- import os
- import argparse
- from mindspore import context, Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16
- from src.dataset import create_ssd_dataset, create_mindrecord
- from src.config import config
- from src.eval_utils import apply_eval
- from src.box_utils import default_boxes
-
- def ssd_eval(dataset_path, ckpt_path, anno_json):
- """SSD evaluation."""
- batch_size = 1
- ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1,
- is_training=False, use_multiprocessing=False)
- if config.model == "ssd300":
- net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
- elif config.model == "ssd_vgg16":
- net = ssd_vgg16(config=config)
- elif config.model == "ssd_mobilenet_v1_fpn":
- net = ssd_mobilenet_v1_fpn(config=config)
- elif config.model == "ssd_resnet50_fpn":
- net = ssd_resnet50_fpn(config=config)
- else:
- raise ValueError(f'config.model: {config.model} is not supported')
- net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
-
- print("Load Checkpoint!")
- param_dict = load_checkpoint(ckpt_path)
- net.init_parameters_data()
- load_param_into_net(net, param_dict)
-
- net.set_train(False)
- total = ds.get_dataset_size() * batch_size
- print("\n========================================\n")
- print("total images num: ", total)
- print("Processing, please wait a moment.")
- eval_param_dict = {"net": net, "dataset": ds, "anno_json": anno_json}
- mAP = apply_eval(eval_param_dict)
- print("\n========================================\n")
- print(f"mAP: {mAP}")
-
- def get_eval_args():
- parser = argparse.ArgumentParser(description='SSD evaluation')
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
- parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
- help="run platform, support Ascend ,GPU and CPU.")
- return parser.parse_args()
-
- if __name__ == '__main__':
- args_opt = get_eval_args()
- if args_opt.dataset == "coco":
- json_path = os.path.join(config.coco_root, config.instances_set.format(config.val_data_type))
- elif args_opt.dataset == "voc":
- json_path = os.path.join(config.voc_root, config.voc_json)
- else:
- raise ValueError('SSD eval only support dataset mode is coco and voc!')
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
-
- mindrecord_file = create_mindrecord(args_opt.dataset, "ssd_eval.mindrecord", False)
-
- print("Start Eval!")
- ssd_eval(mindrecord_file, args_opt.checkpoint_path, json_path)
|