You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.3 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## train SimCLR example ########################
  17. train simclr and get network model files(.ckpt) :
  18. python train.py --train_dataset_path /YourDataPath
  19. """
  20. import ast
  21. import argparse
  22. import os
  23. from src.nt_xent import NT_Xent_Loss
  24. from src.optimizer import get_train_optimizer as get_optimizer
  25. from src.dataset import create_dataset
  26. from src.simclr_model import SimCLR
  27. from src.resnet import resnet50 as resnet
  28. from mindspore import nn
  29. from mindspore import context
  30. from mindspore.train import Model
  31. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  32. from mindspore.common import initializer as weight_init
  33. from mindspore.common import set_seed
  34. from mindspore.context import ParallelMode
  35. from mindspore.communication.management import init, get_rank
  36. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  37. parser = argparse.ArgumentParser(description='MindSpore SimCLR')
  38. parser.add_argument('--device_target', type=str, default='Ascend',
  39. help='Device target, Currently only Ascend is supported.')
  40. parser.add_argument('--run_cloudbrain', type=ast.literal_eval, default=True,
  41. help='Whether it is running on CloudBrain platform.')
  42. parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distributed training.')
  43. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  44. parser.add_argument('--device_id', type=int, default=0, help='device id, default is 0.')
  45. parser.add_argument('--dataset_name', type=str, default='cifar10', help='Dataset, Currently only cifar10 is supported.')
  46. parser.add_argument('--train_url', default=None, help='Cloudbrain Location of training outputs.\
  47. This parameter needs to be set when running on the cloud brain platform.')
  48. parser.add_argument('--data_url', default=None, help='Cloudbrain Location of data.\
  49. This parameter needs to be set when running on the cloud brain platform.')
  50. parser.add_argument('--train_dataset_path', type=str, default='./cifar/train',
  51. help='Dataset path for training classifier. '
  52. 'This parameter needs to be set when running on the host.')
  53. parser.add_argument('--train_output_path', type=str, default='./outputs', help='Location of ckpt and log.\
  54. This parameter needs to be set when running on the host.')
  55. parser.add_argument('--batch_size', type=int, default=128, help='batch_size, default is 128.')
  56. parser.add_argument('--epoch_size', type=int, default=100, help='epoch size for training, default is 100.')
  57. parser.add_argument('--projection_dimension', type=int, default=128,
  58. help='Projection output dimensionality, default is 128.')
  59. parser.add_argument('--width_multiplier', type=int, default=1, help='width_multiplier for ResNet50')
  60. parser.add_argument('--temperature', type=float, default=0.5, help='temperature for loss')
  61. parser.add_argument('--pre_trained_path', type=str, default=None, help='Pretrained checkpoint path')
  62. parser.add_argument('--pretrain_epoch_size', type=int, default=0,
  63. help='real_epoch_size = epoch_size - pretrain_epoch_size.')
  64. parser.add_argument('--save_checkpoint_epochs', type=int, default=1, help='Save checkpoint epochs, default is 1.')
  65. parser.add_argument('--save_graphs', type=ast.literal_eval, default=False,
  66. help='whether save graphs, default is False.')
  67. parser.add_argument('--optimizer', type=str, default='Adam', help='Optimizer, Currently only Adam is supported.')
  68. parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
  69. parser.add_argument('--warmup_epochs', type=int, default=15, help='warmup epochs.')
  70. parser.add_argument('--use_crop', type=ast.literal_eval, default=True, help='RandomResizedCrop')
  71. parser.add_argument('--use_flip', type=ast.literal_eval, default=True, help='RandomHorizontalFlip')
  72. parser.add_argument('--use_color_jitter', type=ast.literal_eval, default=True, help='RandomColorAdjust')
  73. parser.add_argument('--use_color_gray', type=ast.literal_eval, default=True, help='RandomGrayscale')
  74. parser.add_argument('--use_blur', type=ast.literal_eval, default=False, help='GaussianBlur')
  75. parser.add_argument('--use_norm', type=ast.literal_eval, default=False, help='Normalize')
  76. args = parser.parse_args()
  77. local_data_url = './cache/data'
  78. local_train_url = './cache/train'
  79. _local_train_url = local_train_url
  80. if args.device_target != "Ascend":
  81. raise ValueError("Unsupported device target.")
  82. if args.run_distribute:
  83. device_id = os.getenv("DEVICE_ID", default=None)
  84. if device_id is None:
  85. raise ValueError("Unsupported device id.")
  86. args.device_id = int(device_id)
  87. rank_size = os.getenv("RANK_SIZE", default=None)
  88. if rank_size is None:
  89. raise ValueError("Unsupported rank size.")
  90. if args.device_num > int(rank_size) or args.device_num == 1:
  91. args.device_num = int(rank_size)
  92. context.set_context(device_id=args.device_id)
  93. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=args.save_graphs)
  94. context.reset_auto_parallel_context()
  95. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
  96. gradients_mean=True, device_num=args.device_num)
  97. init()
  98. args.rank = get_rank()
  99. local_data_url = os.path.join(local_data_url, str(args.device_id))
  100. local_train_url = os.path.join(local_train_url, str(args.device_id))
  101. args.train_output_path = os.path.join(args.train_output_path, str(args.device_id))
  102. else:
  103. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target,
  104. save_graphs=args.save_graphs, device_id=args.device_id)
  105. args.rank = 0
  106. args.device_num = 1
  107. if args.run_cloudbrain:
  108. import moxing as mox
  109. args.train_dataset_path = os.path.join(local_data_url, "train")
  110. args.train_output_path = local_train_url
  111. mox.file.copy_parallel(src_url=args.data_url, dst_url=local_data_url)
  112. set_seed(1)
  113. class NetWithLossCell(nn.Cell):
  114. def __init__(self, backbone, loss_fn):
  115. super(NetWithLossCell, self).__init__(auto_prefix=False)
  116. self._backbone = backbone
  117. self._loss_fn = loss_fn
  118. def construct(self, data_x, data_y, label):
  119. _, _, x_pred, y_pred = self._backbone(data_x, data_y)
  120. return self._loss_fn(x_pred, y_pred)
  121. if __name__ == "__main__":
  122. dataset = create_dataset(args, dataset_mode="train_endcoder")
  123. # Net.
  124. base_net = resnet(1, args.width_multiplier, cifar_stem=args.dataset_name == "cifar10")
  125. net = SimCLR(base_net, args.projection_dimension, base_net.end_point.in_channels)
  126. # init weight
  127. if args.pre_trained_path:
  128. if args.run_cloudbrain:
  129. mox.file.copy_parallel(src_url=args.pre_trained_path, dst_url=local_data_url+'/pre_train.ckpt')
  130. param_dict = load_checkpoint(local_data_url+'/pre_train.ckpt')
  131. else:
  132. param_dict = load_checkpoint(args.pre_trained_path)
  133. load_param_into_net(net, param_dict)
  134. else:
  135. for _, cell in net.cells_and_names():
  136. if isinstance(cell, nn.Conv2d):
  137. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  138. cell.weight.shape,
  139. cell.weight.dtype))
  140. if isinstance(cell, nn.Dense):
  141. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  142. cell.weight.shape,
  143. cell.weight.dtype))
  144. optimizer = get_optimizer(net, dataset.get_dataset_size(), args)
  145. loss = NT_Xent_Loss(args.batch_size, args.temperature)
  146. net_loss = NetWithLossCell(net, loss)
  147. train_net = nn.TrainOneStepCell(net_loss, optimizer)
  148. model = Model(train_net)
  149. time_cb = TimeMonitor(data_size=dataset.get_dataset_size())
  150. config_ck = CheckpointConfig(save_checkpoint_steps=args.save_checkpoint_epochs)
  151. ckpts_dir = os.path.join(args.train_output_path, "checkpoint")
  152. ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simclr", directory=ckpts_dir, config=config_ck)
  153. print("============== Starting Training ==============")
  154. model.train(args.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
  155. if args.run_cloudbrain and args.device_id == 0:
  156. mox.file.copy_parallel(src_url=_local_train_url, dst_url=args.train_url)