You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

linear_eval.py 11 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## eval SimCLR example ########################
  17. eval SimCLR according to model file:
  18. python eval.py --encoder_checkpoint_path Your.ckpt --train_dataset_path /YourDataPath1
  19. --eval_dataset_path /YourDataPath2
  20. """
  21. import ast
  22. import os
  23. import argparse
  24. import numpy as np
  25. import mindspore.common.dtype as mstype
  26. from mindspore import nn
  27. from mindspore import ops
  28. from mindspore import context
  29. from mindspore.common.initializer import TruncatedNormal
  30. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  31. from mindspore.common import set_seed
  32. from mindspore.context import ParallelMode
  33. from mindspore.communication.management import init, get_rank
  34. from src.dataset import create_dataset
  35. from src.simclr_model import SimCLR
  36. from src.resnet import resnet50 as resnet
  37. from src.reporter import Reporter
  38. from src.optimizer import get_eval_optimizer as get_optimizer
  39. parser = argparse.ArgumentParser(description='Linear Evaluation Protocol')
  40. parser.add_argument('--device_target', type=str, default='Ascend',
  41. help='Device target, Currently only Ascend is supported.')
  42. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Running distributed evaluation.')
  43. parser.add_argument('--run_cloudbrain', type=ast.literal_eval, default=True,
  44. help='Whether it is running on CloudBrain platform.')
  45. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  46. parser.add_argument('--device_id', type=int, default=0, help='device id, default is 0.')
  47. parser.add_argument('--dataset_name', type=str, default='cifar10', help='Dataset, Currently only cifar10 is supported.')
  48. parser.add_argument('--train_url', default=None, help='Cloudbrain Location of training outputs.\
  49. This parameter needs to be set when running on the cloud brain platform.')
  50. parser.add_argument('--data_url', default=None, help='Cloudbrain Location of data.\
  51. This parameter needs to be set when running on the cloud brain platform.')
  52. parser.add_argument('--train_dataset_path', type=str, default='./cifar/train',\
  53. help='Dataset path for training classifier.\
  54. This parameter needs to be set when running on the host.')
  55. parser.add_argument('--eval_dataset_path', type=str, default='./cifar/eval',\
  56. help='Dataset path for evaluating classifier.\
  57. This parameter needs to be set when running on the host.')
  58. parser.add_argument('--train_output_path', type=str, default='./outputs', help='Location of ckpt and log.\
  59. This parameter needs to be set when running on the host.')
  60. parser.add_argument('--class_num', type=int, default=10, help='dataset classification number, default is 10.')
  61. parser.add_argument('--batch_size', type=int, default=128, help='batch_size for training classifier, default is 128.')
  62. parser.add_argument('--epoch_size', type=int, default=100, help='epoch size for training classifier, default is 100.')
  63. parser.add_argument('--projection_dimension', type=int, default=128,
  64. help='Projection output dimensionality, default is 128.')
  65. parser.add_argument('--width_multiplier', type=int, default=1, help='width_multiplier=4,resnet50x4')
  66. parser.add_argument('--pre_classifier_checkpoint_path', type=str, default=None, help='Classifier Checkpoint file path.')
  67. parser.add_argument('--encoder_checkpoint_path', type=str, help='Encoder Checkpoint file path.')
  68. parser.add_argument('--save_checkpoint_epochs', type=int, default=10, help='Save checkpoint epochs, default is 10.')
  69. parser.add_argument('--print_iter', type=int, default=100, help='log print iter, default is 100.')
  70. parser.add_argument('--save_graphs', type=ast.literal_eval, default=False,
  71. help='whether save graphs, default is False.')
  72. parser.add_argument('--use_norm', type=ast.literal_eval, default=False, help='Dataset normalize.')
  73. args = parser.parse_args()
  74. set_seed(1)
  75. local_data_url = './cache/data'
  76. local_train_url = './cache/train'
  77. _local_train_url = local_train_url
  78. if args.device_target != "Ascend":
  79. raise ValueError("Unsupported device target.")
  80. if args.run_distribute:
  81. device_id = os.getenv("DEVICE_ID", default=None)
  82. if device_id is None:
  83. raise ValueError("Unsupported device id.")
  84. args.device_id = int(device_id)
  85. rank_size = os.getenv("RANK_SIZE", default=None)
  86. if rank_size is None:
  87. raise ValueError("Unsupported rank size.")
  88. if args.device_num > int(rank_size) or args.device_num == 1:
  89. args.device_num = int(rank_size)
  90. context.set_context(device_id=args.device_id)
  91. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=args.save_graphs)
  92. context.reset_auto_parallel_context()
  93. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
  94. gradients_mean=True, device_num=args.device_num)
  95. init()
  96. args.rank = get_rank()
  97. local_data_url = os.path.join(local_data_url, str(args.device_id))
  98. local_train_url = os.path.join(local_train_url, str(args.device_id))
  99. args.train_output_path = os.path.join(args.train_output_path, str(args.device_id))
  100. else:
  101. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target,
  102. save_graphs=args.save_graphs, device_id=args.device_id)
  103. args.rank = 0
  104. args.device_num = 1
  105. if args.run_cloudbrain:
  106. import moxing as mox
  107. args.train_dataset_path = os.path.join(local_data_url, "train")
  108. args.eval_dataset_path = os.path.join(local_data_url, "val")
  109. args.train_output_path = local_train_url
  110. mox.file.copy_parallel(src_url=args.data_url, dst_url=local_data_url)
  111. class LogisticRegression(nn.Cell):
  112. """
  113. Logistic regression
  114. """
  115. def __init__(self, n_features, n_classes):
  116. super(LogisticRegression, self).__init__()
  117. self.model = nn.Dense(n_features, n_classes, TruncatedNormal(0.02), TruncatedNormal(0.02))
  118. def construct(self, x):
  119. x = self.model(x)
  120. return x
  121. class Linear_Eval():
  122. """
  123. Linear classifier
  124. """
  125. def __init__(self, net, loss):
  126. super(Linear_Eval, self).__init__()
  127. self.net = net
  128. self.softmax = nn.Softmax()
  129. self.loss = loss
  130. def __call__(self, x, y):
  131. x = self.net(x)
  132. loss = self.loss(x, y)
  133. x = self.softmax(x)
  134. predicts = ops.Argmax(output_type=mstype.int32)(x)
  135. acc = np.sum(predicts.asnumpy() == y.asnumpy())/len(y.asnumpy())
  136. return loss.asnumpy(), acc
  137. class Linear_Train(nn.Cell):
  138. """
  139. Train linear classifier
  140. """
  141. def __init__(self, net, loss, opt):
  142. super(Linear_Train, self).__init__()
  143. self.netwithloss = nn.WithLossCell(net, loss)
  144. self.train_net = nn.TrainOneStepCell(self.netwithloss, opt)
  145. self.train_net.set_train()
  146. def construct(self, x, y):
  147. return self.train_net(x, y)
  148. if __name__ == "__main__":
  149. base_net = resnet(1, args.width_multiplier, cifar_stem=args.dataset_name == "cifar10")
  150. simclr_model = SimCLR(base_net, args.projection_dimension, base_net.end_point.in_channels)
  151. if args.run_cloudbrain:
  152. mox.file.copy_parallel(src_url=args.encoder_checkpoint_path, dst_url=local_data_url+'/encoder.ckpt')
  153. simclr_param = load_checkpoint(local_data_url+'/encoder.ckpt')
  154. else:
  155. simclr_param = load_checkpoint(args.encoder_checkpoint_path)
  156. load_param_into_net(simclr_model.encoder, simclr_param)
  157. classifier = LogisticRegression(simclr_model.n_features, args.class_num)
  158. dataset = create_dataset(args, dataset_mode="train_classifier")
  159. optimizer = get_optimizer(classifier, dataset.get_dataset_size(), args)
  160. criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  161. net_Train = Linear_Train(net=classifier, loss=criterion, opt=optimizer)
  162. reporter = Reporter(args, linear_eval=True)
  163. reporter.dataset_size = dataset.get_dataset_size()
  164. reporter.linear_eval = True
  165. if args.pre_classifier_checkpoint_path:
  166. if args.run_cloudbrain:
  167. mox.file.copy_parallel(src_url=args.pre_classifier_checkpoint_path,
  168. dst_url=local_data_url+'/pre_classifier.ckpt')
  169. classifier_param = load_checkpoint(local_data_url+'/pre_classifier.ckpt')
  170. else:
  171. classifier_param = load_checkpoint(args.pre_classifier_checkpoint_path)
  172. load_param_into_net(classifier, classifier_param)
  173. else:
  174. dataset_train = []
  175. for _, data in enumerate(dataset, start=1):
  176. _, images, labels = data
  177. features = simclr_model.inference(images)
  178. dataset_train.append([features, labels])
  179. reporter.info('==========start training linear classifier===============')
  180. # Train.
  181. for _ in range(args.epoch_size):
  182. reporter.epoch_start()
  183. for idx, data in enumerate(dataset_train, start=1):
  184. features, labels = data
  185. out = net_Train(features, labels)
  186. reporter.step_end(out)
  187. reporter.epoch_end(classifier)
  188. reporter.info('==========end training linear classifier===============')
  189. dataset = create_dataset(args, dataset_mode="eval_classifier")
  190. reporter.dataset_size = dataset.get_dataset_size()
  191. net_Eval = Linear_Eval(net=classifier, loss=criterion)
  192. # Eval.
  193. reporter.info('==========start evaluating linear classifier===============')
  194. reporter.start_predict()
  195. for idx, data in enumerate(dataset, start=1):
  196. _, images, labels = data
  197. features = simclr_model.inference(images)
  198. batch_loss, batch_acc = net_Eval(features, labels)
  199. reporter.predict_step_end(batch_loss, batch_acc)
  200. reporter.end_predict()
  201. reporter.info('==========end evaluating linear classifier===============')
  202. if args.run_cloudbrain:
  203. mox.file.copy_parallel(src_url=_local_train_url, dst_url=args.train_url)