|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- # Contents
-
- - [SimCLR Description](#simclr-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- ## [SimCLR Description](#contents)
-
- SimCLR: a simple framework for contrastive learning of visual representations.
- [Paper](https://arxiv.org/pdf/2002.05709.pdf): Ting Chen and Simon Kornblith and Mohammad Norouzi and Geoffrey Hinton. A Simple Framework for Contrastive Learning of Visual Representations. *arXiv preprint arXiv:2002.05709*. 2020.
-
- ## [Model Architecture](#contents)
-
- SimCLR learns representations by maximizing agreement between differently augmented views of the same data example via a contrastive loss in the latent space. This framework comprises the following four major components: a stochastic data augmentation module, a neural network base encoder, a small neural network projection head and a contrastive loss function.
-
- ## [Dataset](#contents)
-
- In the following sections, we will introduce how to run the scripts using the related dataset below.
-
- Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
-
- - Dataset size:175M,60,000 32*32 colorful images in 10 classes
- - Train:146M,50,000 images
- - Test:29.3M,10,000 images
- - Data format:binary files
- - Note:Data will be processed in dataset.py
- - Download the dataset, the directory structure is as follows:
-
- ```bash
- ├─cifar-10-batches-bin
- │
- └─cifar-10-verify-bin
- ```
-
- ## [Environment Requirements](#contents)
-
- - Hardware(Ascend)
- - Prepare hardware environment with Ascend processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- ```python
- # enter script dir, train SimCLR
- sh run_standalone_train_ascend.sh [cifar10] [TRAIN_DATASET_PATH] [DEVICE_ID]
- or
- sh run_distribution_ascend.sh [DEVICENUM] [RANK_TABLE_FILE] [cifar10] [TRAIN_DATASET_PATH]
- # enter script dir, evaluate SimCLR
- sh run_standalone_eval_ascend.sh [cifar10] [DEVICE_ID] [SIMCLR_MODEL_PATH] [TRAIN_DATASET_PATH] [EVAL_DATASET_PATH]
- ```
-
- ## [Script Description](#contents)
-
- ### [Script and Sample Code](#contents)
-
- ```bash
- ├── cv
- ├── SimCLR
- ├── README.md // descriptions about SimCLR
- ├── requirements.txt // package needed
- ├── scripts
- │ ├──run_distribution_train_ascend.sh // train in ascend
- │ ├──run_standalone_train_ascend.sh // train in ascend
- │ ├──run_standalone_eval_ascend.sh // evaluate in ascend
- ├── src
- │ ├──dataset.py // creating dataset
- │ ├──lr_generator.py // generating learning rate
- │ ├──nt_xent.py // contrastive cross entropy loss
- │ ├──optimizer.py // generating optimizer
- │ ├──resnet.py // base encoder network
- │ ├──simclr_model.py // simclr architecture
- ├── train.py // training script
- ├── linear_eval.py // linear evaluation script
- ├── export.py // export model for inference
- ```
-
- ### [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py as follows:
- --device_target: Device target, Currently only Ascend is supported.
- --run_cloudbrain: Whether it is running on CloudBrain platform.
- --run_distribute: Run distributed training.
- --device_num: Device num.
- --device_id: Device id, default is 0.
- --dataset_name: Dataset, Currently only cifar10 is supported.
- --train_url: Cloudbrain Location of training outputs.This parameter needs to be set when running on the cloud brain platform.
- --data_url: Cloudbrain Location of data. This parameter needs to be set when running on the cloud brain platform.
- --train_dataset_path: Dataset path for training classifier. This parameter needs to be set when running on the host.
- --train_output_path: Location of ckpt and log. This parameter needs to be set when running on the host.
- --batch_size: Batch size, default is 128.
- --epoch_size: Epoch size for training, default is 100.
- --projection_dimension: Projection output dimensionality, default is 128.
- --width_multiplier: Width multiplier for ResNet50, default is 1.
- --temperature: Temperature for contrastive cross entropy loss.
- --pre_trained_path: Pretrained checkpoint path.
- --pretrain_epoch_size: real_epoch_size = epoch_size - pretrain_epoch_size.
- save_checkpoint_epochs: Save checkpoint epochs, default is 1.
- --save_graphs: Whether save graphs, default is False.
- --optimizer: Optimizer, Currently only Adam is supported.
- --weight_decay: Weight decay.
- --warmup_epochs: Warmup epochs.
-
- Major parameters in linear_eval.py as follows:
- --device_target: Device target, Currently only Ascend is supported.
- --run_cloudbrain: Whether it is running on CloudBrain platform.
- --run_distribute: Run distributed training.
- --device_num: Device num.
- --device_id: Device id, default is 0.
- --dataset_name: Dataset, Currently only cifar10 is supported.
- --train_url: Cloudbrain Location of training outputs.This parameter needs to be set when running on the cloud brain platform.
- --data_url: Cloudbrain Location of data. This parameter needs to be set when running on the cloud brain platform.
- --train_dataset_path: Dataset path for training classifier. This parameter needs to be set when running on the host.
- --eval_dataset_path: Dataset path for evaluating classifier.This parameter needs to be set when running on the host.
- --train_output_path: Location of ckpt and log. This parameter needs to be set when running on the host.
- --class_num: dataset classification number, default is 10 for cifar10.
- --batch_size: Batch size, default is 128.
- --epoch_size: Epoch size for training, default is 100.
- --projection_dimension: Projection output dimensionality, default is 128.
- --width_multiplier: Width multiplier for ResNet50, default is 1.
- --pre_classifier_checkpoint_path: Classifier Checkpoint file path.
- --encoder_checkpoint_path: Encoder Checkpoint file path.
- --save_checkpoint_epochs: Save checkpoint epochs, default is 10.
- --print_iter: Log print iter, default is 100.
- --save_graphs: whether save graphs, default is False.
- ```
-
- ### [Training Process](#contents)
-
- #### Training
-
- - running on Ascend
-
- ```bash
- sh run_distribution_ascend.sh [DEVICENUM] [RANK_TABLE_FILE] [cifar10] [TRAIN_DATASET_PATH]
- ```
-
- After training, the loss value will be achieved as follows:
-
- ```bash
- # grep "loss is " log
- epoch: 1 step: 48, loss is 9.5758915
- epoch time: 253236.075 ms, per step time: 5275.752 ms
- epoch: 1 step: 48, loss is 9.363186
- epoch time: 253739.376 ms, per step time: 5286.237 ms
- epoch: 1 step: 48, loss is 9.36029
- epoch time: 253711.625 ms, per step time: 5285.659 ms
- ...
- epoch: 100 step: 48, loss is 7.453776
- epoch time: 12341.851 ms, per step time: 257.122 ms
- epoch: 100 step: 48, loss is 7.499168
- epoch time: 12420.060 ms, per step time: 258.751 ms
- epoch: 100 step: 48, loss is 7.442362
- epoch time: 12725.863 ms, per step time: 265.122 ms
- ...
- ```
-
- The model checkpoint will be saved in the outputs directory.
- ### [Evaluation Process](#contents)
- #### Evaluation
- Before running the command below, please check the checkpoint path used for evaluation.
-
- - running on Ascend
-
- ```bash
- sh run_standalone_eval_ascend.sh [cifar10] [DEVICE_ID] [SIMCLR_MODEL_PATH] [TRAIN_DATASET_PATH] [EVAL_DATASET_PATH]
- ```
-
- You can view the results through the file "eval_log". The accuracy of the test dataset will be as follows:
-
- ```bash
- # grep "Average accuracy: " eval_log
- 'Accuracy': 0.84505
- ```
-
- ## [Model Description](#contents)
-
- ### [Performance](#contents)
-
- #### Evaluation Performance
-
- | Parameters | Ascend |
- | -------------------------- | ------------------------------------------------------------|
- | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G |
- | uploaded Date | 30/03/2021 (month/day/year) |
- | MindSpore Version | 1.1.1 |
- | Dataset | CIFAR-10 |
- | Training Parameters | epoch=100, batch_size=128, device_num=8 |
- | Optimizer | Adam |
- | Loss Function | NT-Xent Loss |
- | linear eval | 84.505% |
- | Total time | 25m04s |
- | Scripts | [SimCLR Script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/simclr) | [SimCLR Script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/simclr) |
-
- ## [Description of Random Situation](#contents)
-
- We set the seed inside dataset.py. We also use random seed in train.py.
-
- ## [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|