You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.0 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. mobilenetv3 export mindir.
  17. """
  18. import argparse
  19. import numpy as np
  20. from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
  21. from src.config import config_gpu
  22. from src.config import config_cpu
  23. from src.mobilenetV3 import mobilenet_v3_large
  24. parser = argparse.ArgumentParser(description='Image classification')
  25. parser.add_argument('--checkpoint_path', type=str, required=True, help='Checkpoint file path')
  26. parser.add_argument('--device_target', type=str, default="GPU", help='run device_target')
  27. args_opt = parser.parse_args()
  28. if __name__ == '__main__':
  29. cfg = None
  30. if args_opt.device_target == "GPU":
  31. cfg = config_gpu
  32. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  33. elif args_opt.device_target == "CPU":
  34. cfg = config_cpu
  35. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  36. else:
  37. raise ValueError("Unsupported device_target.")
  38. net = mobilenet_v3_large(num_classes=cfg.num_classes, activation="Softmax")
  39. param_dict = load_checkpoint(args_opt.checkpoint_path)
  40. load_param_into_net(net, param_dict)
  41. input_shp = [1, 3, cfg.image_height, cfg.image_width]
  42. input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
  43. export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format)