|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- # Contents
-
- - [DenseNet Description](#densenet-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Distributed Training](#distributed-training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Training accuracy results](#training-accuracy-results)
- - [Training performance results](#training-performance-results)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [DenseNet Description](#contents)
-
- DenseNet is a convolution based neural network for the task of image classification. The paper describing the model can be found [here](https://arxiv.org/abs/1608.06993). HuaWei’s DenseNet is a implementation on [MindSpore](https://www.mindspore.cn/).
-
- The repository also contains scripts to launch training and inference routines.
-
- # [Model Architecture](#contents)
-
- DenseNet supports two kinds of implementations: DenseNet100 and DenseNet121, where the number represents number of layers in the network.
-
- DenseNet121 builds on 4 densely connected block and DenseNet100 builds on 3. In every dense block, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. Concatenation is used. Each layer is receiving a “collective knowledge” from all preceding layers.
-
- # [Dataset](#contents)
-
- Dataset used in DenseNet121: ImageNet
-
- The default configuration of the Dataset are as follows:
-
- - Training Dataset preprocess:
- - Input size of images is 224\*224
- - Range (min, max) of respective size of the original size to be cropped is (0.08, 1.0)
- - Range (min, max) of aspect ratio to be cropped is (0.75, 1.333)
- - Probability of the image being flipped set to 0.5
- - Randomly adjust the brightness, contrast, saturation (0.4, 0.4, 0.4)
- - Normalize the input image with respect to mean and standard deviation
-
- - Test Dataset preprocess:
- - Input size of images is 224\*224 (Resize to 256\*256 then crops images at the center)
- - Normalize the input image with respect to mean and standard deviation
-
- Dataset used in DenseNet100: Cifar-10
-
- The default configuration of the Dataset are as follows:
-
- - Training Dataset preprocess:
- - Input size of images is 32\*32
- - Randomly cropping is applied to the image with padding=4
- - Probability of the image being flipped set to 0.5
- - Randomly adjust the brightness, contrast, saturation (0.4, 0.4, 0.4)
- - Normalize the input image with respect to mean and standard deviation
-
- - Test Dataset preprocess:
- - Input size of images is 32\*32
- - Normalize the input image with respect to mean and standard deviation
-
- # [Features](#contents)
-
- ## Mixed Precision
-
- The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
-
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- - running on Ascend
-
- ```python
- # run training example
- python train.py --net [NET_NAME] --dataset [DATASET_NAME] --data_dir /PATH/TO/DATASET --pretrained /PATH/TO/PRETRAINED_CKPT --is_distributed 0 > train.log 2>&1 &
-
- # run distributed training example
- sh scripts/run_distribute_train.sh 8 rank_table.json [NET_NAME] [DATASET_NAME] /PATH/TO/DATASET /PATH/TO/PRETRAINED_CKPT
-
- # run evaluation example
- python eval.py --net [NET_NAME] --dataset [DATASET_NAME] --data_dir /PATH/TO/DATASET --pretrained /PATH/TO/CHECKPOINT > eval.log 2>&1 &
- OR
- sh scripts/run_distribute_eval.sh 8 rank_table.json [NET_NAME] [DATASET_NAME] /PATH/TO/DATASET /PATH/TO/CHECKPOINT
- ```
-
- For distributed training, a hccl configuration file with JSON format needs to be created in advance.
-
- Please follow the instructions in the link below:
-
- <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools>.
-
- - running on GPU
-
- For running on GPU, please change `platform` from `Ascend` to `GPU`
-
- ```python
- # run training example
- export CUDA_VISIBLE_DEVICES=0
- python train.py --net=[NET_NAME] --dataset=[DATASET_NAME] --data_dir=[DATASET_PATH] --is_distributed=0 --device_target='GPU' > train.log 2>&1 &
-
- # run distributed training example
- sh run_distribute_train_gpu.sh 8 0,1,2,3,4,5,6,7 [NET_NAME] [DATASET_NAME] [DATASET_PATH]
-
- # run evaluation example
- python eval.py --net=[NET_NAME] --dataset=[DATASET_NAME] --data_dir=[DATASET_PATH] --device_target='GPU' --pretrained=[CHECKPOINT_PATH] > eval.log 2>&1 &
- OR
- sh run_distribute_eval_gpu.sh 1 0 [NET_NAME] [DATASET_NAME] [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```text
- ├── model_zoo
- ├── README.md // descriptions about all the models
- ├── densenet
- ├── README.md // descriptions about densenet
- ├── scripts
- │ ├── run_distribute_train.sh // shell script for distributed on Ascend
- │ ├── run_distribute_train_gpu.sh // shell script for distributed on GPU
- │ ├── run_distribute_eval.sh // shell script for evaluation on Ascend
- │ ├── run_distribute_eval_gpu.sh // shell script for evaluation on GPU
- ├── src
- │ ├── datasets // dataset processing function
- │ ├── losses
- │ ├──crossentropy.py // densenet loss function
- │ ├── lr_scheduler
- │ ├──lr_scheduler.py // densenet learning rate schedule function
- │ ├── network
- │ ├──densenet.py // densenet architecture
- │ ├──optimizers // densenet optimize function
- │ ├──utils
- │ ├──logging.py // logging function
- │ ├──var_init.py // densenet variable init function
- │ ├── config.py // network config
- ├── train.py // training script
- ├── eval.py // evaluation script
- ```
-
- ## [Script Parameters](#contents)
-
- You can modify the training behaviour through the various flags in the `train.py` script. Flags in the `train.py` script are as follows:
-
- ```python
- --data_dir train data dir
- --num_classes num of classes in dataset(default:1000 for densenet121; 10 for densenet100)
- --image_size image size of the dataset
- --per_batch_size mini-batch size (default: 32 for densenet121; 64 for densenet100) per gpu
- --pretrained path of pretrained model
- --lr_scheduler type of LR schedule: exponential, cosine_annealing
- --lr initial learning rate
- --lr_epochs epoch milestone of lr changing
- --lr_gamma decrease lr by a factor of exponential lr_scheduler
- --eta_min eta_min in cosine_annealing scheduler
- --T_max T_max in cosine_annealing scheduler
- --max_epoch max epoch num to train the model
- --warmup_epochs warmup epoch(when batchsize is large)
- --weight_decay weight decay (default: 1e-4)
- --momentum momentum(default: 0.9)
- --label_smooth whether to use label smooth in CE
- --label_smooth_factor smooth strength of original one-hot
- --log_interval logging interval(default:100)
- --ckpt_path path to save checkpoint
- --ckpt_interval the interval to save checkpoint
- --is_save_on_master save checkpoint on master or all rank
- --is_distributed if multi device(default: 1)
- --rank local rank of distributed(default: 0)
- --group_size world size of distributed(default: 1)
- ```
-
- ## [Training Process](#contents)
-
- ### Training
-
- - running on Ascend
-
- ```python
- python train.py --net [NET_NAME] --dataset [DATASET_NAME] --data_dir /PATH/TO/DATASET --pretrained /PATH/TO/PRETRAINED_CKPT --is_distributed 0 > train.log 2>&1 &
- ```
-
- The python command above will run in the background, The log and model checkpoint will be generated in `output/202x-xx-xx_time_xx_xx_xx/`. The loss value of training DenseNet121 on ImageNet will be achieved as follows:
-
- ```shell
- 2020-08-22 16:58:56,617:INFO:epoch[0], iter[5003], loss:4.367, mean_fps:0.00 imgs/sec
- 2020-08-22 16:58:56,619:INFO:local passed
- 2020-08-22 17:02:19,920:INFO:epoch[1], iter[10007], loss:3.193, mean_fps:6301.11 imgs/sec
- 2020-08-22 17:02:19,921:INFO:local passed
- 2020-08-22 17:05:43,112:INFO:epoch[2], iter[15011], loss:3.096, mean_fps:6304.53 imgs/sec
- 2020-08-22 17:05:43,113:INFO:local passed
- ...
- ```
-
- - running on GPU
-
- ```python
- export CUDA_VISIBLE_DEVICES=0
- python train.py --net [NET_NAME] --dataset [DATASET_NAME] --data_dir=[DATASET_PATH] --is_distributed=0 --device_target='GPU' > train.log 2>&1 &
- ```
-
- The python command above will run in the background, you can view the results through the file `train.log`.
-
- After training, you'll get some checkpoint files under the folder `./ckpt_0/` by default.
-
- - running on CPU
-
- ```python
- python train.py --net=[NET_NAME] --dataset=[DATASET_NAME] --data_dir=[DATASET_PATH] --is_distributed=0 --device_target='CPU' > train.log 2>&1 &
- ```
-
- The python command above will run in the background, The log and model checkpoint will be generated in `output/202x-xx-xx_time_xx_xx_xx/`.
-
- ### Distributed Training
-
- - running on Ascend
-
- ```bash
- sh scripts/run_distribute_train.sh 8 rank_table.json [NET_NAME] [DATASET_NAME] /PATH/TO/DATASET /PATH/TO/PRETRAINED_CKPT
- ```
-
- The above shell script will run distribute training in the background. You can view the results log and model checkpoint through the file `train[X]/output/202x-xx-xx_time_xx_xx_xx/`. The loss value of training DenseNet121 on ImageNet will be achieved as follows:
-
- ```log
- 2020-08-22 16:58:54,556:INFO:epoch[0], iter[5003], loss:3.857, mean_fps:0.00 imgs/sec
- 2020-08-22 17:02:19,188:INFO:epoch[1], iter[10007], loss:3.18, mean_fps:6260.18 imgs/sec
- 2020-08-22 17:05:42,490:INFO:epoch[2], iter[15011], loss:2.621, mean_fps:6301.11 imgs/sec
- 2020-08-22 17:09:05,686:INFO:epoch[3], iter[20015], loss:3.113, mean_fps:6304.37 imgs/sec
- 2020-08-22 17:12:28,925:INFO:epoch[4], iter[25019], loss:3.29, mean_fps:6303.07 imgs/sec
- 2020-08-22 17:15:52,167:INFO:epoch[5], iter[30023], loss:2.865, mean_fps:6302.98 imgs/sec
- ...
- ...
- ```
-
- - running on GPU
-
- ```bash
- cd scripts
- sh run_distribute_train_gpu.sh 8 0,1,2,3,4,5,6,7 [NET_NAME] [DATASET_NAME] [DATASET_PATH]
- ```
-
- The above shell script will run distribute training in the background. You can view the results through the file `train/train.log`.
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation
-
- - evaluation on Ascend
-
- running the command below for evaluation.
-
- ```python
- python eval.py --net [NET_NAME] --dataset [DATASET_NAME] --data_dir /PATH/TO/DATASET --pretrained /PATH/TO/CHECKPOINT > eval.log 2>&1 &
- OR
- sh scripts/run_distribute_eval.sh 8 rank_table.json [NET_NAME] [DATASET_NAME] /PATH/TO/DATASET /PATH/TO/CHECKPOINT
- ```
-
- The above python command will run in the background. You can view the results through the file "output/202x-xx-xx_time_xx_xx_xx/202x_xxxx.log". The accuracy of evaluating DenseNet121 on the test dataset of ImageNet will be as follows:
-
- ```log
- 2020-08-24 09:21:50,551:INFO:after allreduce eval: top1_correct=37657, tot=49920, acc=75.43%
- 2020-08-24 09:21:50,551:INFO:after allreduce eval: top5_correct=46224, tot=49920, acc=92.60%
- ```
-
- - evaluation on GPU
-
- running the command below for evaluation.
-
- ```python
- python eval.py --net=[NET_NAME] --dataset=[DATASET_NAME] --data_dir=[DATASET_PATH] --device_target='GPU' --pretrained=[CHECKPOINT_PATH] > eval.log 2>&1 &
- OR
- sh run_distribute_eval_gpu.sh 1 0 [NET_NAME] [DATASET_NAME] [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- The above python command will run in the background. You can view the results through the file "eval/eval.log". The accuracy of evaluating DenseNet121 on the test dataset of ImageNet will be as follows:
-
- ```log
- 2021-02-04 14:20:50,551:INFO:after allreduce eval: top1_correct=37637, tot=49984, acc=75.30%
- 2021-02-04 14:20:50,551:INFO:after allreduce eval: top5_correct=46370, tot=49984, acc=92.77%
- ```
-
- The accuracy of evaluating DenseNet100 on the test dataset of Cifar-10 will be as follows:
-
- ```log
- 2021-03-12 18:04:07,893:INFO:after allreduce eval: top1_correct=9536, tot=9984, acc=95.51%
- ```
-
- - evaluation on CPU
-
- running the command below for evaluation.
-
- ```python
- python eval.py --net=[NET_NAME] --dataset=[DATASET_NAME] --data_dir=[DATASET_PATH] --device_target='CPU' --pretrained=[CHECKPOINT_PATH] > eval.log 2>&1 &
- ```
-
- The above python command will run in the background. You can view the results through the file "eval/eval.log". The accuracy of evaluating DenseNet100 on the test dataset of Cifar-10 will be as follows:
-
- ```log
- 2021-03-18 09:06:43,247:INFO:after allreduce eval: top1_correct=9492, tot=9984, acc=95.07%
- ```
-
- # [Model Description](#contents)
-
- ## [Performance](#contents)
-
- ### DenseNet121
-
- ### Training accuracy results
-
- | Parameters | Ascend | GPU |
- | ------------------- | --------------------------- | --------------------------- |
- | Model Version | DenseNet121 | DenseNet121 |
- | Resource | Ascend 910; OS Euler2.8 | Tesla V100-PCIE |
- | Uploaded Date | 09/15/2020 (month/day/year) | 01/27/2021 (month/day/year) |
- | MindSpore Version | 1.0.0 | 1.1.0 |
- | Dataset | ImageNet | ImageNet |
- | epochs | 120 | 120 |
- | outputs | probability | probability |
- | accuracy | Top1:75.13%; Top5:92.57% | Top1:75.30%; Top5:92.77% |
-
- ### Training performance results
-
- | Parameters | Ascend | GPU |
- | ------------------- | --------------------------- | ---------------------------- |
- | Model Version | DenseNet121 | DenseNet121 |
- | Resource | Ascend 910; OS Euler2.8 | Tesla V100-PCIE |
- | Uploaded Date | 09/15/2020 (month/day/year) | 02/04/2021 (month/day/year) |
- | MindSpore Version | 1.0.0 | 1.1.1 |
- | Dataset | ImageNet | ImageNet |
- | batch_size | 32 | 32 |
- | outputs | probability | probability |
- | speed | 1pc:760 img/s;8pc:6000 img/s| 1pc:161 img/s;8pc:1288 img/s |
-
- ### DenseNet100
-
- ### Training performance
-
- | Parameters | GPU |
- | ------------------- | ---------------------------- |
- | Model Version | DenseNet100 |
- | Resource | Tesla V100-PCIE |
- | Uploaded Date | 03/18/2021 (month/day/year) |
- | MindSpore Version | 1.2.0 |
- | Dataset | Cifar-10 |
- | batch_size | 64 |
- | epochs | 300 |
- | outputs | probability |
- | accuracy | 95.31% |
- | speed | 1pc: 600.07 img/sec |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|