You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 3.1 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into air, onnx, mindir models"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
  19. from eval import BuildEvalNetwork
  20. from src.nets import net_factory
  21. parser = argparse.ArgumentParser(description='checkpoint export')
  22. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  23. parser.add_argument("--batch_size", type=int, default=1, help="batch size")
  24. parser.add_argument("--input_size", type=int, default=513, help="batch size")
  25. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  26. parser.add_argument("--file_name", type=str, default="deeplabv3", help="output file name.")
  27. parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
  28. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  29. help="device target")
  30. parser.add_argument('--model', type=str.lower, default='deeplab_v3_s8', choices=['deeplab_v3_s16', 'deeplab_v3_s8'],
  31. help='Select model structure (Default: deeplab_v3_s8)')
  32. parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)')
  33. parser.add_argument("--input_format", type=str, choices=["NCHW", "NHWC"], default="NCHW",
  34. help="NCHW or NHWC")
  35. args = parser.parse_args()
  36. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  37. if args.device_target == "Ascend":
  38. context.set_context(device_id=args.device_id)
  39. if __name__ == '__main__':
  40. if args.model == 'deeplab_v3_s16':
  41. network = net_factory.nets_map['deeplab_v3_s16']('eval', args.num_classes, 16, True)
  42. else:
  43. network = net_factory.nets_map['deeplab_v3_s8']('eval', args.num_classes, 8, True)
  44. network = BuildEvalNetwork(network, args.input_format)
  45. param_dict = load_checkpoint(args.ckpt_file)
  46. # load the parameter into net
  47. load_param_into_net(network, param_dict)
  48. if args.input_format == "NHWC":
  49. input_data = Tensor(np.ones([args.batch_size, args.input_size, args.input_size, 3]).astype(np.float32))
  50. else:
  51. input_data = Tensor(np.ones([args.batch_size, 3, args.input_size, args.input_size]).astype(np.float32))
  52. export(network, input_data, file_name=args.file_name, file_format=args.file_format)